
SEO AI Assistant
MCP server that enables AI assistants to perform SEO automation tasks including keyword research, SERP analysis, and competitor analysis through Google Ads API integration.
README
App SEO AI
Application for SEO automation and AI-powered optimization with Google Ads Keyword Planner integration.
Features
- Keyword research using Google Ads API
- SERP analysis
- Competitor analysis
- SEO recommendations
- MCP (Model Context Protocol) integration for AI assistants
Prerequisites
- Node.js (v14 or higher)
- npm or yarn
- Google Ads account with API access
- Google Cloud Platform project with Google Ads API enabled
Setup
1. Clone the repository
git clone https://github.com/ccnn2509/app-seo-ai.git
cd app-seo-ai
2. Install dependencies
npm install
3. Configure environment variables
Copy the example environment file:
cp .env.example .env
Edit the .env
file and fill in your Google Ads API credentials:
# Server Configuration
PORT=3000
NODE_ENV=development
# Google Ads API Configuration
GOOGLE_ADS_DEVELOPER_TOKEN=your_developer_token
GOOGLE_ADS_CLIENT_ID=your_client_id
GOOGLE_ADS_CLIENT_SECRET=your_client_secret
GOOGLE_ADS_REFRESH_TOKEN=your_refresh_token
GOOGLE_ADS_LOGIN_CUSTOMER_ID=your_customer_id_without_dashes
# SERP API Configuration (optional)
SERP_API_KEY=your_serp_api_key
4. Get Google Ads API refresh token
Run the following command to get a refresh token:
npm run get-token
This will open your browser and guide you through the OAuth2 authentication process. The refresh token will be automatically saved to your .env
file.
5. Start the server
For development:
npm run dev
For production:
npm start
The server will start on the port specified in your .env
file (default: 3000).
API Documentation
API documentation is available at /api-docs
when the server is running:
http://localhost:3000/api-docs
MCP Integration
This project includes MCP (Model Context Protocol) integration, allowing AI assistants to use the API. The MCP configuration is in the mcp.json
file.
To use this with Smithery:
- Go to Smithery
- Create a new MCP server
- Select the
app-seo-ai
repository - Configure the server settings
- Deploy the server
Available MCP Tools
research_keywords
- Research keywords related to a given topic or seed keywordanalyze_serp
- Analyze a SERP (Search Engine Results Page) for a given queryanalyze_competitors
- Analyze competitors for a given keyword or domain_health
- Health check endpoint
Example Usage
Research Keywords
// Example request to research keywords
fetch('http://localhost:3000/api/keywords/ideas?keyword=seo%20tools&language=en')
.then(response => response.json())
.then(data => console.log(data));
Analyze SERP
// Example request to analyze SERP
fetch('http://localhost:3000/api/serp/analyze?query=best%20seo%20tools&location=United%20States')
.then(response => response.json())
.then(data => console.log(data));
Analyze Competitors
// Example request to analyze competitors
fetch('http://localhost:3000/api/competitors/analyze?domain=example.com')
.then(response => response.json())
.then(data => console.log(data));
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.