SEO AI Assistant

SEO AI Assistant

MCP server that enables AI assistants to perform SEO automation tasks including keyword research, SERP analysis, and competitor analysis through Google Ads API integration.

Category
Visit Server

README

App SEO AI

Application for SEO automation and AI-powered optimization with Google Ads Keyword Planner integration.

Features

  • Keyword research using Google Ads API
  • SERP analysis
  • Competitor analysis
  • SEO recommendations
  • MCP (Model Context Protocol) integration for AI assistants

Prerequisites

  • Node.js (v14 or higher)
  • npm or yarn
  • Google Ads account with API access
  • Google Cloud Platform project with Google Ads API enabled

Setup

1. Clone the repository

git clone https://github.com/ccnn2509/app-seo-ai.git
cd app-seo-ai

2. Install dependencies

npm install

3. Configure environment variables

Copy the example environment file:

cp .env.example .env

Edit the .env file and fill in your Google Ads API credentials:

# Server Configuration
PORT=3000
NODE_ENV=development

# Google Ads API Configuration
GOOGLE_ADS_DEVELOPER_TOKEN=your_developer_token
GOOGLE_ADS_CLIENT_ID=your_client_id
GOOGLE_ADS_CLIENT_SECRET=your_client_secret
GOOGLE_ADS_REFRESH_TOKEN=your_refresh_token
GOOGLE_ADS_LOGIN_CUSTOMER_ID=your_customer_id_without_dashes

# SERP API Configuration (optional)
SERP_API_KEY=your_serp_api_key

4. Get Google Ads API refresh token

Run the following command to get a refresh token:

npm run get-token

This will open your browser and guide you through the OAuth2 authentication process. The refresh token will be automatically saved to your .env file.

5. Start the server

For development:

npm run dev

For production:

npm start

The server will start on the port specified in your .env file (default: 3000).

API Documentation

API documentation is available at /api-docs when the server is running:

http://localhost:3000/api-docs

MCP Integration

This project includes MCP (Model Context Protocol) integration, allowing AI assistants to use the API. The MCP configuration is in the mcp.json file.

To use this with Smithery:

  1. Go to Smithery
  2. Create a new MCP server
  3. Select the app-seo-ai repository
  4. Configure the server settings
  5. Deploy the server

Available MCP Tools

  • research_keywords - Research keywords related to a given topic or seed keyword
  • analyze_serp - Analyze a SERP (Search Engine Results Page) for a given query
  • analyze_competitors - Analyze competitors for a given keyword or domain
  • _health - Health check endpoint

Example Usage

Research Keywords

// Example request to research keywords
fetch('http://localhost:3000/api/keywords/ideas?keyword=seo%20tools&language=en')
  .then(response => response.json())
  .then(data => console.log(data));

Analyze SERP

// Example request to analyze SERP
fetch('http://localhost:3000/api/serp/analyze?query=best%20seo%20tools&location=United%20States')
  .then(response => response.json())
  .then(data => console.log(data));

Analyze Competitors

// Example request to analyze competitors
fetch('http://localhost:3000/api/competitors/analyze?domain=example.com')
  .then(response => response.json())
  .then(data => console.log(data));

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured