Sentiment402 MCP Adapter

Sentiment402 MCP Adapter

Provides access to Sentiment402 market sentiment data for global markets, crypto, TradFi, and specific assets, with built-in support for x402 micropayment protocol when API responses require payment.

Category
Visit Server

README

Sentiment402 MCP Adapter (stdio)

A thin MCP server that exposes Sentiment402 snapshot endpoints as MCP tools. It calls the public Sentiment402 API over HTTPS and relays x402 payment requirements when the API responds with 402 Payment Required.

This adapter is intentionally stateless and contains no database credentials or admin headers. It is safe to run locally or package as a public MCP tool.

Tool surface

Tool HTTP endpoint Description
get_global_snapshot GET /v1/snapshot/global Global market sentiment snapshot
get_crypto_pulse GET /v1/snapshot/crypto Crypto market sentiment pulse
get_tradfi_pulse GET /v1/snapshot/tradfi TradFi market sentiment pulse
get_asset_view GET /v1/snapshot/asset/:symbol Latest pulse for a specific asset

Common inputs

All tools accept the same optional query inputs (and get_asset_view additionally requires a symbol).

  • format: full or compact_trading
  • fields: comma-separated allowlist (only meaningful when format=compact_trading)
  • symbol: required for get_asset_view

Example tool arguments:

{
  "format": "compact_trading",
  "fields": "headline,trend,confidence"
}

x402 payment handling

When the Sentiment402 API responds with 402, the adapter returns a structured PAYMENT_REQUIRED payload. If SENTIMENT402_X402_PRIVATE_KEY is configured, it will attempt an x402 payment automatically using the options returned by the API. If the payment cannot be completed, the PAYMENT_REQUIRED payload is returned.

Example payload (truncated):

{
  "error": "PAYMENT_REQUIRED",
  "x402Version": 1,
  "resource": "https://sentiment-api.kytona.com/v1/snapshot/global",
  "accepts": [
    {
      "scheme": "exact",
      "network": "base",
      "asset": "USDC",
      "amount": "100000",
      "payTo": "0x..."
    }
  ],
  "rawHeader": "..."
}

Caching

A small in-memory cache is used to reduce repeated requests.

  • Default TTL: 60000 ms
  • Cache key: {tool}:{path}?{query}
  • Only 2xx JSON responses are cached
  • 402 responses are never cached

Configuration

Defaults:

  • API base URL: https://sentiment-api.kytona.com
  • API version: v1

Environment variables:

  • SENTIMENT402_API_BASE_URL (optional) — default https://sentiment-api.kytona.com
  • SENTIMENT402_API_VERSION (optional) — v1 (default v1)
  • SENTIMENT402_CACHE_TTL_MS (optional) — cache TTL in ms (default 60000)
  • SENTIMENT402_USER_AGENT (optional) — default sentiment402-mcp/0.1.0
  • SENTIMENT402_X402_PRIVATE_KEY (optional) — EVM private key for auto-paying x402 requests
  • SENTIMENT402_X402_MAX_PAYMENT (optional) — max payment in base units (default 100000, i.e. $0.10 USDC)

No API keys are required for the Sentiment402 API. The private key is only needed if you want auto-pay for 402 responses.

Run locally

Build and start:

pnpm install
pnpm build
pnpm start

You can also run directly in dev mode:

pnpm dev

To point at localhost:

SENTIMENT402_API_BASE_URL="http://localhost:8080" pnpm dev

MCP host config example

Example for a stdio MCP host configuration:

{
  "command": "node",
  "args": ["/path/to/sentiment402/mcp/dist/index.js"],
  "env": {
    "SENTIMENT402_API_BASE_URL": "https://sentiment-api.kytona.com",
    "SENTIMENT402_API_VERSION": "v1"
  }
}

Client Setup Instructions

Claude Desktop

Claude Desktop supports MCP servers via stdio configuration.

Config file location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

Option 1: Run from GitHub (Recommended)

{
  "mcpServers": {
    "sentiment402": {
      "command": "npx",
      "args": ["-y", "github:kytona/mcp"],
      "env": {
        "SENTIMENT402_API_VERSION": "v1",
        "SENTIMENT402_X402_PRIVATE_KEY": "your_evm_private_key_here"
      }
    }
  }
}

This automatically downloads and runs the latest version from GitHub.

Option 2: Run from Local Clone

  1. Clone and build:

    git clone https://github.com/kytona/mcp.git
    cd mcp
    pnpm install
    pnpm build
    
  2. Configure Claude:

    {
      "mcpServers": {
        "sentiment402": {
          "command": "node",
          "args": ["/absolute/path/to/mcp/dist/index.js"],
         "env": {
           "SENTIMENT402_API_VERSION": "v1",
           "SENTIMENT402_X402_PRIVATE_KEY": "your_evm_private_key_here"
         }
        }
      }
    }
    
  3. Restart Claude Desktop and look for the 🔌 icon to see available tools.

Resources:

ChatGPT Desktop

ChatGPT supports MCP via Developer Mode (requires ChatGPT Plus).

Setup Steps

  1. Enable Developer Mode:

    • Open ChatGPT → Settings
    • Go to Apps & ConnectorsAdvanced settings
    • Enable Developer mode
  2. Add MCP Server (NPX - Recommended):

    • In Apps & Connectors, click Create
    • Enter:
      • Name: Sentiment402
      • Command: npx
      • Args: -y github:kytona/mcp
      • Environment Variables:
        SENTIMENT402_API_VERSION=v1
        SENTIMENT402_X402_PRIVATE_KEY=your_evm_private_key_here
        
    • Check I trust this application
    • Click Create
  3. Use in Chat:

    • Click the + in the prompt field
    • Go to MoreDeveloper mode
    • Enable the Sentiment402 connector

Using Local Clone

  1. Clone and build as described above for Claude
  2. In ChatGPT Developer mode, configure:
    • Command: node
    • Args: /absolute/path/to/mcp/dist/index.js
    • Environment Variables: Same as above

Resources:

Running on a Cloud Server

To run the MCP server remotely and connect from Claude/ChatGPT:

1. Deploy to Cloud

# On your cloud server (AWS, DigitalOcean, etc.)
git clone https://github.com/kytona/mcp.git
cd mcp
pnpm install
pnpm build

# Run with PM2 for persistence
npm install -g pm2
pm2 start dist/index.js --name sentiment402-mcp
pm2 save
pm2 startup

2. Expose via ngrok (Development Only)

# Install ngrok: https://ngrok.com/download
ngrok tcp 8000

# Note the forwarding address: tcp://0.tcp.ngrok.io:12345

3. Configure Client

For Claude or ChatGPT, update the command to connect via TCP:

{
  "command": "node",
  "args": ["-e", "const net = require('net'); const client = net.connect({host: '0.tcp.ngrok.io', port: 12345}); process.stdin.pipe(client); client.pipe(process.stdout);"]
}

⚠️ Security Warning: ngrok exposes your server publicly. For production, use:

  • VPN (Tailscale, WireGuard)
  • SSH tunneling
  • Proper authentication middleware

Resources:

Other MCP Clients (Cline, etc.)

For other MCP-compatible clients, use a similar stdio configuration:

{
  "mcpServers": {
    "sentiment402": {
      "command": "npx",
      "args": ["-y", "github:kytona/mcp"],
      "env": {
        "SENTIMENT402_API_VERSION": "v1"
      }
    }
  }
}

Refer to your client's documentation for the exact config file location.

Test script

The repo includes a stdio test runner that calls a tool and prints the response.

pnpm build
pnpm test:mcp

To point at localhost:

SENTIMENT402_API_BASE_URL="http://localhost:8080" pnpm test:mcp

Optional overrides:

  • SENTIMENT402_MCP_TOOL (default get_global_snapshot)
  • SENTIMENT402_MCP_TOOL_ARGS (JSON string)
  • SENTIMENT402_MCP_SERVER_CMD / SENTIMENT402_MCP_SERVER_ARGS to customize the server process

License

MIT. See LICENSE.

Safety notes

  • The adapter only calls the public HTTPS API and never touches internal databases.
  • The MCP response body contains only the API response or a PAYMENT_REQUIRED payload.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured