SensorMCP Server
An MCP server that enables automated dataset creation and custom object detection model training through natural language interactions. It integrates foundation models like GroundedSAM for auto-labeling and supports training specialized YOLOv8 models using local or Unsplash images.
README
SensorMCP Server
A SensorMCP Model Context Protocol (MCP) Server that enables automated dataset creation and custom object detection model training through natural language interactions. This project integrates computer vision capabilities with Large Language Models using the MCP standard.
š About
SensorMCP Server combines the power of foundation models (like GroundedSAM) with custom model training (YOLOv8) to create a seamless workflow for object detection. Using the Model Context Protocol, it enables LLMs to:
- Automatically label images using foundation models
- Create custom object detection datasets
- Train specialized detection models
- Download images from Unsplash for training data
[!NOTE] The Model Context Protocol (MCP) enables seamless integration between LLMs and external tools, making this ideal for AI-powered computer vision workflows.
⨠Features
- Foundation Model Integration: Uses GroundedSAM for automatic image labeling
- Custom Model Training: Fine-tune YOLOv8 models on your specific objects
- Image Data Management: Download images from Unsplash or import local images
- Ontology Definition: Define custom object classes through natural language
- MCP Protocol: Native integration with LLM workflows and chat interfaces
- Fixed Data Structure: Organized directory layout for reproducible workflows
š ļø Installation
Prerequisites
- uv for package management
- Python 3.13+ (
uv python install 3.13) - CUDA-compatible GPU (recommended for training)
Setup
- Clone the repository:
git clone <repository-url>
cd sensor-mcp
- Install dependencies:
uv sync
- Set up environment variables (create
.envfile):
UNSPLASH_API_KEY=your_unsplash_api_key_here
š Usage
Running the MCP Server
For MCP integration (recommended):
uv run src/zoo_mcp.py
For standalone web server:
uv run src/server.py
MCP Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"sensormcp-server": {
"type": "stdio",
"command": "uv",
"args": [
"--directory",
"/path/to/sensor-mcp",
"run",
"src/zoo_mcp.py"
]
}
}
}
Available MCP Tools
- list_available_models() - View supported base and target models
- define_ontology(objects_list) - Define object classes to detect
- set_base_model(model_name) - Initialize foundation model for labeling
- set_target_model(model_name) - Initialize target model for training
- fetch_unsplash_images(query, max_images) - Download training images
- import_images_from_folder(folder_path) - Import local images
- label_images() - Auto-label images using the base model
- train_model(epochs, device) - Train custom detection model
Example Workflow
Through your MCP-enabled LLM interface:
-
Define what to detect:
Define ontology for "tiger, elephant, zebra" -
Set up models:
Set base model to grounded_sam Set target model to yolov8n.pt -
Get training data:
Fetch 50 images from Unsplash for "wildlife animals" -
Create dataset:
Label all images using the base model -
Train custom model:
Train model for 100 epochs on device 0
š Project Structure
sensor-mcp/
āāā src/
ā āāā server.py # Main MCP server implementation
ā āāā zoo_mcp.py # MCP entry point
ā āāā models.py # Model management and training
ā āāā image_utils.py # Image processing and Unsplash API
ā āāā state.py # Application state management
ā āāā data/ # Created automatically
ā āāā raw_images/ # Original/unlabeled images
ā āāā labeled_images/# Auto-labeled datasets
ā āāā models/ # Trained model weights
āāā static/ # Web interface assets
āāā index.html # Web interface template
š§ Supported Models
Base Models (for auto-labeling)
- GroundedSAM: Foundation model for object detection and segmentation
Target Models (for training)
- YOLOv8n.pt: Nano - fastest inference
- YOLOv8s.pt: Small - balanced speed/accuracy
- YOLOv8m.pt: Medium - higher accuracy
- YOLOv8l.pt: Large - high accuracy
- YOLOv8x.pt: Extra Large - highest accuracy
š API Integration
Unsplash API
To use image download functionality:
- Create an account at Unsplash Developers
- Create a new application
- Add your access key to the
.envfile
š ļø Development
Running Tests
uv run pytest
Code Formatting
uv run black src/
š Requirements
See pyproject.toml for full dependency list. Key dependencies:
mcp[cli]- Model Context Protocolautodistill- Foundation model integrationtorch&torchvision- Deep learning frameworkultralytics- YOLOv8 implementation
š¤ Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
š Citation
If you use this code or data in your research, please cite our paper:
@inproceedings{Guo2025,
author = {Guo, Yunqi and Zhu, Guanyu and Liu, Kaiwei and Xing, Guoliang},
title = {A Model Context Protocol Server for Custom Sensor Tool Creation},
booktitle = {3rd International Workshop on Networked AI Systems (NetAISys '25)},
year = {2025},
month = {jun},
address = {Anaheim, CA, USA},
publisher = {ACM},
doi = {10.1145/3711875.3736687},
isbn = {979-8-4007-1453-5/25/06}
}
š License
This project is licensed under the MIT License.
š§ Contact
For questions about the zoo dataset mentioned in development: Email: yq@anysign.net
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.