Semantic Scholar MCP Server

Semantic Scholar MCP Server

Mirror of

MCP-Mirror

Research & Data
Visit Server

README

Semantic Scholar MCP Server

A FastMCP server implementation for the Semantic Scholar API, providing comprehensive access to academic paper data, author information, and citation networks.

Features

  • Paper Search & Discovery

    • Full-text search with advanced filtering
    • Title-based paper matching
    • Paper recommendations (single and multi-paper)
    • Batch paper details retrieval
    • Advanced search with ranking strategies
  • Citation Analysis

    • Citation network exploration
    • Reference tracking
    • Citation context and influence analysis
  • Author Information

    • Author search and profile details
    • Publication history
    • Batch author details retrieval
  • Advanced Features

    • Complex search with multiple ranking strategies
    • Customizable field selection
    • Efficient batch operations
    • Rate limiting compliance
    • Support for both authenticated and unauthenticated access
    • Graceful shutdown and error handling
    • Connection pooling and resource management

System Requirements

  • Python 3.8+
  • FastMCP framework
  • Environment variable for API key (optional)

Installation

Install using FastMCP:

fastmcp install semantic-scholar-server.py --name "Semantic Scholar" -e SEMANTIC_SCHOLAR_API_KEY=your-api-key

The -e SEMANTIC_SCHOLAR_API_KEY parameter is optional. If not provided, the server will use unauthenticated access with lower rate limits.

Configuration

Environment Variables

  • SEMANTIC_SCHOLAR_API_KEY: Your Semantic Scholar API key (optional)
    • Get your key from Semantic Scholar API
    • If not provided, the server will use unauthenticated access

Rate Limits

The server automatically adjusts to the appropriate rate limits:

With API Key:

  • Search, batch and recommendation endpoints: 1 request per second
  • Other endpoints: 10 requests per second

Without API Key:

  • All endpoints: 100 requests per 5 minutes
  • Longer timeouts for requests

Available MCP Tools

Note: All tools are aligned with the official Semantic Scholar API documentation. Please refer to the official documentation for detailed field specifications and the latest updates.

Paper Search Tools

  • paper_relevance_search: Search for papers using relevance ranking

    • Supports comprehensive query parameters including year range and citation count filters
    • Returns paginated results with customizable fields
  • paper_bulk_search: Bulk paper search with sorting options

    • Similar to relevance search but optimized for larger result sets
    • Supports sorting by citation count, publication date, etc.
  • paper_title_search: Find papers by exact title match

    • Useful for finding specific papers when you know the title
    • Returns detailed paper information with customizable fields
  • paper_details: Get comprehensive details about a specific paper

    • Accepts various paper ID formats (S2 ID, DOI, ArXiv, etc.)
    • Returns detailed paper metadata with nested field support
  • paper_batch_details: Efficiently retrieve details for multiple papers

    • Accepts up to 1000 paper IDs per request
    • Supports the same ID formats and fields as single paper details

Citation Tools

  • paper_citations: Get papers that cite a specific paper

    • Returns paginated list of citing papers
    • Includes citation context when available
    • Supports field customization and sorting
  • paper_references: Get papers referenced by a specific paper

    • Returns paginated list of referenced papers
    • Includes reference context when available
    • Supports field customization and sorting

Author Tools

  • author_search: Search for authors by name

    • Returns paginated results with customizable fields
    • Includes affiliations and publication counts
  • author_details: Get detailed information about an author

    • Returns comprehensive author metadata
    • Includes metrics like h-index and citation counts
  • author_papers: Get papers written by an author

    • Returns paginated list of author's publications
    • Supports field customization and sorting
  • author_batch_details: Get details for multiple authors

    • Efficiently retrieve information for up to 1000 authors
    • Returns the same fields as single author details

Recommendation Tools

  • paper_recommendations_single: Get recommendations based on a single paper

    • Returns similar papers based on content and citation patterns
    • Supports field customization for recommended papers
  • paper_recommendations_multi: Get recommendations based on multiple papers

    • Accepts positive and negative example papers
    • Returns papers similar to positive examples and dissimilar to negative ones

Usage Examples

Basic Paper Search

results = await paper_relevance_search(
    context,
    query="machine learning",
    year="2020-2024",
    min_citation_count=50,
    fields=["title", "abstract", "authors"]
)

Paper Recommendations

# Single paper recommendation
recommendations = await paper_recommendations_single(
    context,
    paper_id="649def34f8be52c8b66281af98ae884c09aef38b",
    fields="title,authors,year"
)

# Multi-paper recommendation
recommendations = await paper_recommendations_multi(
    context,
    positive_paper_ids=["649def34f8be52c8b66281af98ae884c09aef38b", "ARXIV:2106.15928"],
    negative_paper_ids=["ArXiv:1805.02262"],
    fields="title,abstract,authors"
)

Batch Operations

# Get details for multiple papers
papers = await paper_batch_details(
    context,
    paper_ids=["649def34f8be52c8b66281af98ae884c09aef38b", "ARXIV:2106.15928"],
    fields="title,authors,year,citations"
)

# Get details for multiple authors
authors = await author_batch_details(
    context,
    author_ids=["1741101", "1780531"],
    fields="name,hIndex,citationCount,paperCount"
)

Error Handling

The server provides standardized error responses:

{
    "error": {
        "type": "error_type",  # rate_limit, api_error, validation, timeout
        "message": "Error description",
        "details": {
            # Additional context
            "authenticated": true/false  # Indicates if request was authenticated
        }
    }
}

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python