Semantic D1 MCP
Enables AI-assisted analysis and optimization of Cloudflare D1 databases through comprehensive schema introspection, relationship mapping, validation, and optimization recommendations. Demonstrates semantic intent patterns with hexagonal architecture for maintainable database development workflows.
README
Semantic D1 MCP
Reference implementation of Semantic Intent as Single Source of Truth patterns
A Model Context Protocol (MCP) server for Cloudflare D1 database introspection, demonstrating semantic anchoring, observable properties, and domain-driven design for AI-assisted database development.
📚 Table of Contents
🎯 What Makes This Different
This isn't just another database introspection tool—it's a reference implementation of proven semantic intent patterns:
- ✅ Semantic Anchoring: Schema analysis based on meaning (table purpose, relationships), not technical metrics (row counts, sizes)
- ✅ Observable Properties: Decisions anchored to directly observable schema markers (foreign keys, indexes, constraints)
- ✅ Intent Preservation: Database semantics maintained through all transformations (development → staging → production)
- ✅ Domain Boundaries: Clear semantic ownership (Schema Domain ≠ Query Optimization Domain ≠ MCP Protocol Domain)
Built on research from Semantic Intent as Single Source of Truth, this implementation demonstrates how to build maintainable, AI-friendly database tools that preserve intent.
🚀 Quick Start
Prerequisites
- Node.js 20.x or higher
- Cloudflare account with D1 databases
- Cloudflare API token with D1 access
Installation
-
Clone the repository
git clone https://github.com/semanticintent/semantic-d1-mcp.git cd semantic-d1-mcp -
Install dependencies
npm install -
Configure environment
Copy the example configuration:
cp .env.example .envUpdate
.envwith your Cloudflare credentials:# Cloudflare Configuration CLOUDFLARE_ACCOUNT_ID=your_cloudflare_account_id CLOUDFLARE_API_TOKEN=your_cloudflare_api_token # D1 Database Configuration - Development D1_DEV_DATABASE_ID=your_dev_database_id D1_DEV_DATABASE_NAME=your_dev_database_name # D1 Database Configuration - Staging (Optional) D1_STAGING_DATABASE_ID=your_staging_database_id D1_STAGING_DATABASE_NAME=your_staging_database_name # D1 Database Configuration - Production (Optional) D1_PROD_DATABASE_ID=your_prod_database_id D1_PROD_DATABASE_NAME=your_prod_database_nameNote: At least one database environment must be configured.
-
Build the server
npm run build -
Start the MCP server
npm startOr use the provided shell script:
./start-d1-mcp.sh
Get Cloudflare API Token
- Go to Cloudflare Dashboard
- Navigate to My Profile → API Tokens
- Click Create Token
- Use the Edit Cloudflare Workers template
- Add D1 permissions:
D1:Read - Copy the token to your
.envfile
Get D1 Database IDs
# List all your D1 databases
wrangler d1 list
# Get specific database info
wrangler d1 info <database-name>
Copy the database IDs to your .env file.
🛠️ MCP Tools
This server provides 4 comprehensive MCP tools for D1 database introspection:
1. analyze_database_schema
Analyze complete database schema structure with metadata and optional sample data.
Parameters:
environment(required):"development"|"staging"|"production"includeSamples(optional, default:true): Include sample data from tablesmaxSampleRows(optional, default:5): Maximum rows per table sample
Returns:
- Complete schema analysis
- Table structures with columns, types, constraints
- Indexes and foreign keys
- Sample data from each table (if enabled)
- Schema metadata and statistics
Example:
{
"name": "analyze_database_schema",
"arguments": {
"environment": "development",
"includeSamples": true,
"maxSampleRows": 5
}
}
2. get_table_relationships
Extract and analyze foreign key relationships between tables.
Parameters:
environment(required): Database environmenttableName(optional): Filter relationships for specific table
Returns:
- Foreign key relationships with cardinality (one-to-many, many-to-one)
- Referential integrity rules (CASCADE, SET NULL, etc.)
- Relationship metadata and statistics
Example:
{
"name": "get_table_relationships",
"arguments": {
"environment": "production",
"tableName": "users"
}
}
3. validate_database_schema
Validate database schema for common issues and anti-patterns.
Parameters:
environment(required): Database environment
Returns:
- Schema validation results
- Missing primary keys
- Foreign keys without indexes
- Naming convention violations
- Tables without relationships
Example:
{
"name": "validate_database_schema",
"arguments": {
"environment": "production"
}
}
4. suggest_database_optimizations
Generate schema optimization recommendations based on structure analysis.
Parameters:
environment(required): Database environment
Returns:
- Prioritized optimization suggestions (high/medium/low)
- Missing index recommendations
- Primary key suggestions
- Schema improvement opportunities
- Performance optimization tips
Example:
{
"name": "suggest_database_optimizations",
"arguments": {
"environment": "production"
}
}
🔌 Connect to Claude Desktop
Connect this MCP server to Claude Desktop for AI-assisted database development.
Configuration
-
Edit Claude Desktop config - Go to Settings → Developer → Edit Config
-
Add MCP server configuration:
{
"mcpServers": {
"semantic-d1": {
"command": "node",
"args": [
"/absolute/path/to/semantic-d1-mcp/dist/index.js"
],
"env": {
"CLOUDFLARE_ACCOUNT_ID": "your_account_id",
"CLOUDFLARE_API_TOKEN": "your_api_token",
"D1_DEV_DATABASE_ID": "your_dev_db_id",
"D1_DEV_DATABASE_NAME": "your_dev_db_name",
"D1_STAGING_DATABASE_ID": "your_staging_db_id",
"D1_STAGING_DATABASE_NAME": "your_staging_db_name",
"D1_PROD_DATABASE_ID": "your_prod_db_id",
"D1_PROD_DATABASE_NAME": "your_prod_db_name"
}
}
}
}
-
Restart Claude Desktop
-
Verify tools are available - You should see 4 D1 tools in Claude's tool list
Usage Example
In Claude Desktop:
"Analyze my production database schema and suggest optimizations for tables with foreign keys"
Claude will use the analyze_database_schema and suggest_database_optimizations tools automatically.
🏗️ Architecture
This project demonstrates Domain-Driven Hexagonal Architecture with clean separation of concerns:
┌─────────────────────────────────────────────────────────┐
│ Presentation Layer │
│ (MCP Server - Protocol Handling) │
└────────────────────┬────────────────────────────────────┘
│
┌────────────────────▼────────────────────────────────────┐
│ Application Layer │
│ (Use Cases - Schema Analysis Orchestration) │
└────────────────────┬────────────────────────────────────┘
│
┌────────────────────▼────────────────────────────────────┐
│ Domain Layer │
│ (Schema Entities, Relationship Logic, Services) │
│ Pure Business Logic │
└────────────────────┬────────────────────────────────────┘
│
┌────────────────────▼────────────────────────────────────┐
│ Infrastructure Layer │
│ (Cloudflare D1 REST API, HTTP Client) │
│ Technical Adapters │
└─────────────────────────────────────────────────────────┘
Implementation Status
Status: ✅ Hexagonal architecture refactoring complete
Current Structure:
src/
├── domain/ # Business logic (entities, services)
│ ├── entities/ # DatabaseSchema, TableInfo, Column, etc.
│ ├── services/ # SchemaAnalyzer, RelationshipAnalyzer, etc.
│ ├── repositories/ # Port interfaces
│ └── value-objects/ # Environment enum
├── application/ # Use cases and orchestration
│ ├── use-cases/ # AnalyzeSchema, GetRelationships, etc.
│ └── ports/ # Cache provider interface
├── infrastructure/ # External adapters
│ ├── adapters/ # CloudflareD1Repository, Cache
│ ├── config/ # CloudflareConfig, DatabaseConfig
│ └── http/ # CloudflareAPIClient
├── presentation/ # MCP protocol layer
│ └── mcp/ # D1DatabaseMCPServer
└── index.ts # Composition root (DI)
See ARCHITECTURE.md for detailed design documentation.
Layer Responsibilities
Domain Layer:
- Database schema entities (Schema, Table, Relationship, Index)
- Schema analysis business logic
- Relationship extraction logic
- Optimization recommendation rules
Application Layer:
- Orchestrate domain services
- Execute use cases (AnalyzeSchema, GetRelationships, etc.)
- Coordinate infrastructure adapters
Infrastructure Layer:
- Cloudflare D1 REST API integration
- HTTP client for API calls
- Cache provider (in-memory)
Presentation Layer:
- MCP server initialization
- Tool registration and routing
- Request/response formatting
Semantic Intent Principles
This codebase follows strict semantic anchoring rules:
-
Semantic Over Structural
// ✅ SEMANTIC: Based on observable schema properties const needsIndex = table.hasForeignKey() && !table.hasIndexOnForeignKey() // ❌ STRUCTURAL: Based on technical metrics const needsIndex = table.rowCount > 10000 && table.queryCount > 100 -
Intent Preservation
// ✅ Environment semantics preserved through transformations const schema = await fetchSchema(Environment.PRODUCTION) // Schema analysis preserves "production" intent - no overrides -
Observable Anchoring
// ✅ Based on directly observable properties const relationships = extractForeignKeys(sqliteMaster) // ❌ Based on inferred behavior const relationships = inferFromQueryPatterns(logs)
See SEMANTIC_ANCHORING_GOVERNANCE.md for complete governance rules.
🧪 Testing
Status: ✅ Comprehensive test suite with 398 tests passing
Test Coverage
- ✅ Domain Layer: 212 tests (entities, services, validation)
- ✅ Infrastructure Layer: 64 tests (D1 adapter, API client, config)
- ✅ Application Layer: 35 tests (use cases, orchestration)
- ✅ Presentation Layer: 13 tests (MCP server, tool routing)
- ✅ Integration: 15 tests (end-to-end flows)
- ✅ Value Objects: 59 tests (Environment, immutability)
Total: 398 tests (all passing ✅)
Running Tests
# Run all tests
npm test
# Watch mode
npm run test:watch
# With UI
npm run test:ui
# Coverage report
npm run test:coverage
Test Framework
- Vitest: Fast unit testing framework
- @vitest/coverage-v8: Code coverage reports
- Mock Strategy: Mock Cloudflare D1 API responses via interface implementations
📖 Learning from This Implementation
This codebase serves as a reference implementation for semantic intent patterns in database tooling.
Key Files to Study
Hexagonal Architecture Implementation:
- src/index.ts - Composition root with dependency injection
- src/domain/entities/ - Domain entities with semantic validation
- src/domain/services/ - Pure business logic services
- src/application/use-cases/ - Orchestration layer
- src/infrastructure/adapters/ - External adapters
- src/presentation/mcp/ - MCP protocol layer
Reference Documentation:
- D1_MCP_REFACTORING_PLAN.md - Complete refactoring plan
- SEMANTIC_ANCHORING_GOVERNANCE.md - Governance rules
- ARCHITECTURE.md - Architecture details
Related Projects
- semantic-context-mcp - Sibling reference implementation for context management
🤝 Contributing
We welcome contributions! This is a reference implementation, so contributions should maintain semantic intent principles.
How to Contribute
- Read the guidelines: CONTRIBUTING.md
- Check refactoring plan: D1_MCP_REFACTORING_PLAN.md
- Follow the architecture: Maintain layer boundaries and semantic anchoring
- Add tests: All changes need comprehensive test coverage
- Document intent: Explain WHY, not just WHAT
Contribution Standards
- ✅ Follow semantic intent patterns
- ✅ Maintain hexagonal architecture (post-refactoring)
- ✅ Add comprehensive tests (90%+ coverage target)
- ✅ Include semantic documentation
- ✅ Pass all CI checks
Quick Links:
- Contributing Guide - Detailed guidelines
- Code of Conduct - Community standards
- Architecture Guide - Design principles
- Security Policy - Report vulnerabilities
Community
- 💬 Discussions - Ask questions
- 🐛 Issues - Report bugs
- 🔒 Security - Report vulnerabilities privately
🔒 Security
Security is a top priority. Please review our Security Policy for:
- API token management best practices
- What to commit / what to exclude
- Reporting security vulnerabilities
- Security checklist for deployment
Found a vulnerability? Email: security@semanticintent.dev
🔬 Research Foundation
This implementation is based on the research paper "Semantic Intent as Single Source of Truth: Immutable Governance for AI-Assisted Development".
Core Principles Applied
- Semantic Over Structural - Schema analysis based on meaning, not metrics
- Intent Preservation - Environment semantics maintained through transformations
- Observable Anchoring - Decisions based on directly observable schema properties
- Immutable Governance - Protect semantic integrity at runtime
Related Resources
- Research Paper (coming soon)
- Semantic Anchoring Governance
- semanticintent.dev (coming soon)
📊 Project Roadmap
✅ Phase 0: Initial Implementation (Complete)
- Monolithic MCP server with 6 tools
- D1 REST API integration
- Basic schema analysis
✅ Phase 1: Domain Layer (Complete)
- 10 domain entities with semantic validation
- 3 domain services (SchemaAnalyzer, RelationshipAnalyzer, OptimizationService)
- 212 passing tests
✅ Phase 2: Infrastructure Layer (Complete)
- CloudflareD1Repository adapter
- CloudflareAPIClient HTTP client
- InMemoryCacheProvider
- 64 passing tests
✅ Phase 3: Application Layer (Complete)
- 4 use cases (AnalyzeSchema, GetRelationships, ValidateSchema, SuggestOptimizations)
- Port interfaces (ICloudflareD1Repository, ICacheProvider)
- 35 passing tests
✅ Phase 4: Presentation Layer (Complete)
- D1DatabaseMCPServer with 4 MCP tools
- Request/response DTOs
- 13 passing tests
✅ Phase 5: Integration & Composition Root (Complete)
- Dependency injection in index.ts
- Environment configuration
- 15 integration tests
✅ Phase 6: CI/CD & Documentation (Complete)
- TypeScript build verification
- README updated
- 398 total tests passing
🎯 Phase 7: Production Readiness (Planned)
- GitHub Actions CI/CD workflow
- Dependabot automation
- Security scanning
- GitHub repository setup
See D1_MCP_REFACTORING_PLAN.md for detailed roadmap.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built on Model Context Protocol by Anthropic
- Inspired by Hexagonal Architecture (Alistair Cockburn)
- Based on Domain-Driven Design principles (Eric Evans)
- Part of the Semantic Intent research initiative
This is a reference implementation demonstrating semantic intent patterns for database introspection. Study the code, learn the patterns, and apply them to your own projects. 🏗️
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
