semantic-code-mcp
A local MCP server that provides semantic code search for Python codebases using tree-sitter for chunking and LanceDB for vector storage. It enables natural language queries to find relevant code snippets based on meaning rather than just text matching.
README
semantic-code-mcp
MCP server that provides semantic code search for Claude Code. Instead of iterative grep/glob, it indexes your codebase with embeddings and returns ranked results by meaning.
Supports Python, Rust, and Markdown — more languages planned.
How It Works
Claude Code ──(MCP/STDIO)──▶ semantic-code-mcp server
│
┌───────────────┼───────────────┐
▼ ▼ ▼
AST Chunker Embedder LanceDB
(tree-sitter) (sentence-trans) (vectors)
- Chunking — tree-sitter parses source files into functions, classes, methods, structs, traits, markdown sections, etc.
- Embedding — sentence-transformers encodes each chunk (all-MiniLM-L6-v2, 384d)
- Storage — vectors stored in LanceDB (embedded, like SQLite)
- Search — hybrid semantic + keyword search with recency boosting
Indexing is incremental (mtime-based) and uses git ls-files for fast file discovery. The embedding model loads lazily on first query.
Installation
macOS / Windows
PyPI ships CPU-only torch on these platforms, so no extra flags are needed (~1.7GB install).
uvx semantic-code-mcp
Claude Code integration:
claude mcp add --scope user semantic-code -- uvx semantic-code-mcp
Linux
[!IMPORTANT] Without the
--indexflag, PyPI installs CUDA-bundled torch (~3.5GB). Unless you need GPU acceleration (you don't — embeddings run on CPU), use the command below to get the CPU-only build (~1.7GB).
uvx --index pytorch-cpu=https://download.pytorch.org/whl/cpu semantic-code-mcp
Claude Code integration:
claude mcp add --scope user semantic-code -- \
uvx --index pytorch-cpu=https://download.pytorch.org/whl/cpu semantic-code-mcp
<details> <summary>Claude Desktop / other MCP clients (JSON config)</summary>
{
"mcpServers": {
"semantic-code": {
"command": "uvx",
"args": ["--index", "pytorch-cpu=https://download.pytorch.org/whl/cpu", "semantic-code-mcp"]
}
}
}
On macOS/Windows you can omit the --index and pytorch-cpu args.
</details>
Updating
uvx caches the installed version. To get the latest release:
uvx --upgrade semantic-code-mcp
Or pin a specific version in your MCP config:
claude mcp add --scope user semantic-code -- uvx semantic-code-mcp@0.2.0
MCP Tools
search_code
Search code by meaning, not just text matching. Auto-indexes on first search.
| Parameter | Type | Default | Description |
|---|---|---|---|
query |
str |
required | Natural language description of what you're looking for |
project_path |
str |
required | Absolute path to the project root |
limit |
int |
10 |
Maximum number of results |
Returns ranked results with file_path, line_start, line_end, name, chunk_type, content, and score.
index_codebase
Index a codebase for semantic search. Only processes new and changed files unless force=True.
| Parameter | Type | Default | Description |
|---|---|---|---|
project_path |
str |
required | Absolute path to the project root |
force |
bool |
False |
Re-index all files regardless of changes |
index_status
Check indexing status for a project.
| Parameter | Type | Default | Description |
|---|---|---|---|
project_path |
str |
required | Absolute path to the project root |
Returns is_indexed, files_count, and chunks_count.
Configuration
All settings are environment variables with the SEMANTIC_CODE_MCP_ prefix (via pydantic-settings):
| Variable | Default | Description |
|---|---|---|
SEMANTIC_CODE_MCP_CACHE_DIR |
~/.cache/semantic-code-mcp |
Where indexes are stored |
SEMANTIC_CODE_MCP_LOCAL_INDEX |
false |
Store index in .semantic-code/ within each project |
SEMANTIC_CODE_MCP_EMBEDDING_MODEL |
all-MiniLM-L6-v2 |
Sentence-transformers model |
SEMANTIC_CODE_MCP_DEBUG |
false |
Enable debug logging |
SEMANTIC_CODE_MCP_PROFILE |
false |
Enable pyinstrument profiling |
Pass environment variables via the env field in your MCP config:
{
"mcpServers": {
"semantic-code": {
"command": "uvx",
"args": ["semantic-code-mcp"],
"env": {
"SEMANTIC_CODE_MCP_DEBUG": "true",
"SEMANTIC_CODE_MCP_LOCAL_INDEX": "true"
}
}
}
}
Or with Claude Code CLI:
claude mcp add --scope user semantic-code \
-e SEMANTIC_CODE_MCP_DEBUG=true \
-e SEMANTIC_CODE_MCP_LOCAL_INDEX=true \
-- uvx semantic-code-mcp
Tech Stack
| Component | Choice | Rationale |
|---|---|---|
| MCP Framework | FastMCP | Python decorators, STDIO transport |
| Embeddings | sentence-transformers | Local, no API costs, good quality |
| Vector Store | LanceDB | Embedded (like SQLite), no server needed |
| Chunking | tree-sitter | AST-based, respects code structure |
Development
uv sync # Install dependencies
uv run python -m semantic_code_mcp # Run server
uv run pytest # Run tests
uv run ruff check src/ # Lint
uv run ruff format src/ # Format
Pre-commit hooks enforce linting, formatting, type-checking (ty), security scanning (bandit), and Conventional Commits.
Releasing
Versions are derived from git tags automatically (hatch-vcs) — there's no hardcoded version in pyproject.toml.
git tag v0.2.0
git push origin v0.2.0
CI builds the package, publishes to PyPI, and creates a GitHub Release with auto-generated notes.
Adding a New Language
The chunker system is designed to make adding languages straightforward. Each language needs:
- A tree-sitter grammar package (e.g.
tree-sitter-javascript) - A chunker subclass that walks the AST and extracts meaningful chunks
Steps:
uv add tree-sitter-mylang
Create src/semantic_code_mcp/chunkers/mylang.py:
from enum import StrEnum, auto
import tree_sitter_mylang as tsmylang
from tree_sitter import Language, Node
from semantic_code_mcp.chunkers.base import BaseTreeSitterChunker
from semantic_code_mcp.models import Chunk, ChunkType
class NodeType(StrEnum):
function_definition = auto()
# ... other node types
class MyLangChunker(BaseTreeSitterChunker):
language = Language(tsmylang.language())
extensions = (".ml",)
def _extract_chunks(self, root: Node, file_path: str, lines: list[str]) -> list[Chunk]:
chunks = []
for node in root.children:
match node.type:
case NodeType.function_definition:
name = node.child_by_field_name("name").text.decode()
chunks.append(self._make_chunk(node, file_path, lines, ChunkType.function, name))
# ... other node types
return chunks
Register it in src/semantic_code_mcp/container.py:
from semantic_code_mcp.chunkers.mylang import MyLangChunker
def get_chunkers(self) -> list[BaseTreeSitterChunker]:
return [PythonChunker(), RustChunker(), MarkdownChunker(), MyLangChunker()]
The CompositeChunker handles dispatch by file extension automatically. Use BaseTreeSitterChunker._make_chunk() for consistent chunk construction. See chunkers/python.py and chunkers/rust.py for complete examples.
Project Structure
src/semantic_code_mcp/chunkers/— language chunkers (base.py,composite.py,python.py,rust.py,markdown.py)src/semantic_code_mcp/services/— IndexService (scan/chunk/index), SearchService (search + auto-index)src/semantic_code_mcp/indexer.py— embed + store pipelinedocs/decisions/— architecture decision recordsTODO.md— epics and planningCHANGELOG.md— completed work (Keep a Changelog format).claude/rules/— context-specific coding rules for AI agents
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.