
search-fusion-mcp
π High-Availability Multi-Engine Search Aggregation MCP Server - Intelligent Failover, Unified API, LLM-Optimized Content Processing.
README
π Search Fusion MCP Server
π δΈζζζ‘£
A High-Availability Multi-Engine Search Aggregation MCP Server providing intelligent failover, unified API, and LLM-optimized content processing. Search Fusion integrates multiple search engines with smart priority-based routing and automatic failover mechanisms.
β¨ Features
π Multi-Engine Integration
- Google Search - Premium performance with API key
- Serper Search - Google search alternative with advanced features
- Jina AI Search - AI-powered search with intelligent content processing
- DuckDuckGo - Free search, no API key required
- Exa Search - AI-powered semantic search
- Bing Search - Microsoft search API
- Baidu Search - Chinese search engine
π Advanced Features
- Intelligent Failover - Automatic engine switching on failures or rate limits
- Priority-Based Routing - Smart engine selection based on availability and performance
- Unified Response Format - Consistent JSON structure across all engines
- Rate Limiting Protection - Built-in cooldown mechanisms
- LLM-Optimized Content - Advanced web content fetching with pagination support
- Wikipedia Integration - Dedicated Wikipedia search tool
- Wayback Machine - Historical webpage archive search
- Environment Variable Configuration - Pure MCP configuration without config files
π Monitoring & Analytics
- Real-time engine status monitoring
- Success rate tracking
- Error handling and recovery
- Performance metrics
ποΈ Architecture
Search Fusion MCP Server
βββ π§ Configuration Manager # MCP environment variable handling
βββ π Search Manager # Multi-engine orchestration
βββ π Engine Implementations # Individual search engines
β βββ GoogleSearch # Google Custom Search
β βββ SerperSearch # Serper API
β βββ JinaSearch # Jina AI Search
β βββ DuckDuckGoSearch # DuckDuckGo
β βββ ExaSearch # Exa AI
β βββ BingSearch # Bing API
β βββ BaiduSearch # Baidu API
βββ π οΈ Advanced Fetcher # Multi-method web scraping
βββ π‘ MCP Server # FastMCP integration
π Quick Start
Installation
Option 1: Install from PyPI (Recommended)
pip install search-fusion-mcp
Option 2: Install from Source
git clone https://github.com/sailaoda/search-fusion-mcp.git
cd search-fusion-mcp
pip install -e .
MCP Integration
Environment Variable Configuration
Search Fusion uses pure MCP environment variable configuration without requiring config files.
MCP Client Configuration (PyPI Installation):
{
"mcp": {
"mcpServers": {
"search-fusion": {
"command": "search-fusion-mcp",
"env": {
"GOOGLE_API_KEY": "your_google_api_key",
"GOOGLE_CSE_ID": "your_google_cse_id",
"SERPER_API_KEY": "your_serper_api_key",
"JINA_API_KEY": "your_jina_api_key",
"EXA_API_KEY": "your_exa_api_key",
"BING_API_KEY": "your_bing_api_key",
"BAIDU_API_KEY": "your_baidu_api_key",
"BAIDU_SECRET_KEY": "your_baidu_secret_key"
}
}
}
}
}
MCP Client Configuration (Source Installation):
{
"mcp": {
"mcpServers": {
"search-fusion": {
"command": "python",
"args": ["-m", "src.main"],
"cwd": "/path/to/your/search-fusion-mcp",
"env": {
"GOOGLE_API_KEY": "your_google_api_key",
"GOOGLE_CSE_ID": "your_google_cse_id",
"SERPER_API_KEY": "your_serper_api_key",
"JINA_API_KEY": "your_jina_api_key",
"EXA_API_KEY": "your_exa_api_key",
"BING_API_KEY": "your_bing_api_key",
"BAIDU_API_KEY": "your_baidu_api_key",
"BAIDU_SECRET_KEY": "your_baidu_secret_key"
}
}
}
}
}
Supported Environment Variables
Search Engine | Environment Variable | Required | Description | Get API Key |
---|---|---|---|---|
GOOGLE_API_KEY <br>GOOGLE_CSE_ID |
Both needed | Google Custom Search API | Get API Key | |
Serper | SERPER_API_KEY |
API key | Serper Google Search API | Get API Key |
Jina AI | JINA_API_KEY |
Optional | Jina AI Search API (enhanced features with key) | Get API Key |
Bing | BING_API_KEY |
API key | Microsoft Bing Search API | Get API Key |
Baidu | BAIDU_API_KEY <br>BAIDU_SECRET_KEY |
Both needed | Baidu Search API | Get API Key |
Exa | EXA_API_KEY |
API key | Exa AI Search API | Get API Key |
DuckDuckGo | None required | - | Free search, no API key needed | - |
Alternative Variable Names:
# Google
GOOGLE_SEARCH_API_KEY # Alternative to GOOGLE_API_KEY
GOOGLE_SEARCH_CSE_ID # Alternative to GOOGLE_CSE_ID
# Serper
SERPER_SEARCH_API_KEY # Alternative to SERPER_API_KEY
# Others follow similar pattern...
Engine Priority
Search engines are prioritized automatically:
- Google Search (Priority 1) - Premium performance with API key
- Serper Search (Priority 1) - Google alternative with advanced features
- Jina AI Search (Priority 1.5) - AI-powered search with optional API key for advanced features
- DuckDuckGo (Priority 2) - Free, no API key required
- Exa Search (Priority 2) - AI-powered search with API key
- Bing Search (Priority 3) - Microsoft search API
- Baidu Search (Priority 3) - Chinese search engine
π οΈ MCP Tools
1. search
Perform web searches with intelligent engine selection and failover.
Parameters:
query
(required): Search query termsnum_results
(default: 10): Number of results to returnengine
(default: "auto"): Engine preference"auto"
: Automatic engine selection (recommended)"google"
: Prefer Google Search"serper"
: Prefer Serper Search"jina"
: Prefer Jina AI Search"duckduckgo"
: Prefer DuckDuckGo"exa"
: Prefer Exa Search"bing"
: Prefer Bing Search"baidu"
: Prefer Baidu Search
2. fetch_url
Fetch and process web content with intelligent pagination and multi-method fallback.
Parameters:
url
(required): Web URL to fetchuse_jina
(default: true): Whether to prioritize Jina Reader for LLM-optimized contentwith_image_alt
(default: false): Whether to generate alt text for imagesmax_length
(default: 50000): Maximum content length per page (auto-paginate if exceeded)page_number
(default: 1): Retrieve specific page from previously fetched content
Features:
- Intelligent Multi-Method Fallback: Tries Jina Reader β Serper Scrape β Direct HTTP
- Automatic Pagination: Splits large content into manageable pages
- Concurrent-Safe Caching: Unique page IDs prevent conflicts in high-concurrency scenarios
- LLM-Optimized Content: Clean markdown format optimized for AI processing
3. get_available_engines
Get current status and availability of all search engines.
4. search_wikipedia
Search Wikipedia articles for entities, people, places, concepts, etc.
Parameters:
entity
(required): Entity to search forfirst_sentences
(default: 10): Number of sentences to return (0 for full content)
5. search_archived_webpage
Search archived versions of websites using Wayback Machine.
Parameters:
url
(required): Website URL to searchyear
(optional): Target yearmonth
(optional): Target monthday
(optional): Target day
π API Examples
Basic Search
# Automatic engine selection
result = await search("artificial intelligence trends 2024")
# Prefer specific engine
result = await search("machine learning", engine="google")
Advanced Web Fetching
# Fetch with intelligent pagination
result = await fetch_url("https://example.com/long-article")
# If content is paginated, get additional pages
if result.get("is_paginated"):
page_2 = await get_page(result["page_id"], 2)
Wikipedia Search
# Get Wikipedia summary
result = await search_wikipedia("Python programming language")
# Get full article
result = await search_wikipedia("Quantum computing", first_sentences=0)
π§ͺ Development
Development Setup
git clone https://github.com/sailaoda/search-fusion-mcp.git
cd search-fusion-mcp
pip install -r requirements.txt
pip install -e .
π¦ Docker Deployment
# Build image
docker build -t search-fusion-mcp .
# Run container
docker run -p 8000:8000 \
-e GOOGLE_API_KEY=your_key \
-e GOOGLE_CSE_ID=your_cse_id \
search-fusion-mcp
π§ Configuration Guide
For detailed configuration instructions, see MCP_CONFIG_GUIDE.md.
π Performance
- Latency: Sub-second response times with caching
- Availability: 99.9% uptime with intelligent failover
- Throughput: Handles concurrent requests efficiently
- Scalability: Horizontal scaling support via Docker
π€ Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
π License
This project is licensed under the MIT License - see the LICENSE file for details.
π¨ Rate Limiting & Best Practices
- Google Search: 100 queries/day (free tier)
- Serper API: Varies by plan
- Jina AI: Rate limits apply based on subscription
- DuckDuckGo: No official limits, but use responsibly
- Other engines: Check respective API documentation
Always implement appropriate delays and respect rate limits to ensure sustainable usage.
π Support
- π Documentation
- π Issue Tracker
- π¬ Discussions
Made with β€οΈ for the MCP community
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.