Scalene-MCP
A FastMCP server that provides LLMs with structured access to Scalene's CPU, GPU, and memory profiling for Python applications. It enables automated performance analysis, bottleneck identification, and optimization suggestions through natural language interactions in supported IDEs.
README
Scalene-MCP
A FastMCP v2 server providing LLMs with structured access to Scalene's comprehensive CPU, GPU, and memory profiling capabilities for Python packages and C/C++ bindings.
Installation
Prerequisites
- Python 3.10+
- uv (recommended) or pip
From Source
git clone https://github.com/plasma-umass/scalene-mcp.git
cd scalene-mcp
uv venv
uv sync
As a Package
pip install scalene-mcp
Quick Start: Running the Server
Development Mode
# Using uv
uv run scalene_mcp.server
# Using pip
python -m scalene_mcp.server
Production Mode
python -m scalene_mcp.server
šÆ Native Integration with LLM Agents
Works seamlessly with:
- ā GitHub Copilot - Direct integration
- ā Claude Code - Claude Code and Claude VSCode extension
- ā Cursor - All-in-one IDE
- ā Any MCP-compatible LLM client
Zero-Friction Setup (3 Steps)
-
Install
pip install scalene-mcp -
Configure - Choose one method:
Automated (Recommended):
python scripts/setup_vscode.pyInteractive setup script auto-finds your editor and configures it.
Manual - GitHub Copilot:
// .vscode/settings.json { "github.copilot.chat.mcp.servers": { "scalene": { "command": "uv", "args": ["run", "-m", "scalene_mcp.server"] } } }Manual - Claude Code / Cursor: See editor-specific setup guides
-
Restart VSCode/Cursor and start profiling!
Start Profiling Immediately
Open any Python project and ask your LLM:
"Profile main.py and show me the bottlenecks"
The LLM automatically:
- š Detects your project structure
- š Finds and profiles your code
- š Analyzes CPU, memory, GPU usage
- š” Suggests optimizations
No path thinking. No manual configuration. Zero friction.
š Editor-Specific Setup:
š Full docs: SETUP_VSCODE.md | QUICKSTART.md | TOOLS_REFERENCE.md
Available Serving Methods (FastMCP)
Scalene-MCP can be served in multiple ways using FastMCP's built-in serving capabilities:
1. Standard Server (Default)
# Starts an MCP-compatible server on stdio
python -m scalene_mcp.server
2. With Claude Desktop
Configure in your claude_desktop_config.json:
{
"mcpServers": {
"scalene": {
"command": "python",
"args": ["-m", "scalene_mcp.server"]
}
}
}
Then restart Claude Desktop.
3. With HTTP/SSE Endpoint
# If using fastmcp with HTTP support
uv run --help # Check FastMCP documentation for HTTP serving
4. With Environment Variables
# Configure via environment
export SCALENE_PYTHON_EXECUTABLE=python3.11
export SCALENE_TIMEOUT=30
python -m scalene_mcp.server
5. Programmatically
from fastmcp import Server
# Create and run server programmatically
server = create_scalene_server()
# Configure and start...
Programmatic Usage
Use Scalene-MCP directly in your Python code:
from scalene_mcp.profiler import ScaleneProfiler
import asyncio
async def main():
profiler = ScaleneProfiler()
# Profile a script
result = await profiler.profile(
type="script",
script_path="fibonacci.py",
include_memory=True,
include_gpu=False
)
print(f"Profile ID: {result['profile_id']}")
print(f"Peak memory: {result['summary'].get('total_memory_mb', 'N/A')}MB")
asyncio.run(main())
Overview
Scalene-MCP transforms Scalene's powerful profiling output into an LLM-friendly format through a clean, minimal set of well-designed tools. Get detailed performance insights without images or excessive context overhead.
What Scalene-MCP Does
- ā Profile Python scripts with full Scalene feature set
- ā Analyze profiles for hotspots, bottlenecks, memory leaks
- ā Compare profiles to detect regressions
- ā Pass arguments to profiled scripts
- ā Structured output in JSON format for LLMs
- ā Async execution for non-blocking profiling
What Scalene-MCP Doesn't Do
- ā In-process profiling (
Scalene.start()/stop()) - uses subprocess instead for isolation - ā Process attachment (
--pidbased profiling) - profiles scripts, not running processes - ā Single-function profiling - designed for complete script analysis
Note: The subprocess-based approach was chosen for reliability and simplicity. LLM workflows typically profile complete scripts, which is a perfect fit. See SCALENE_MODES_ANALYSIS.md for detailed scope analysis.
Key Features
- Complete CPU profiling: Line-by-line Python/C time, system time, CPU utilization
- Memory profiling: Peak/average memory per line, leak detection with velocity metrics
- GPU profiling: NVIDIA and Apple GPU support with per-line attribution
- Advanced analysis: Stack traces, bottleneck identification, performance recommendations
- Profile comparison: Track performance changes across runs
- LLM-optimized: Structured JSON output, summaries before details, context-aware formatting
Available Tools (7 Consolidated Tools)
Scalene-MCP provides a clean, LLM-optimized set of 7 tools:
Discovery (3 tools)
- get_project_root() - Auto-detect project structure
- list_project_files(pattern, max_depth) - Find files by glob pattern
- set_project_context(project_root) - Override auto-detection
Profiling (1 unified tool)
- profile(type, script_path/code, ...) - Profile scripts or code snippets
type="script"for script profilingtype="code"for code snippet profiling
Analysis (1 mega tool)
- analyze(profile_id, metric_type, ...) - 9 analysis modes in one tool:
metric_type="all"- Comprehensive analysismetric_type="cpu"- CPU hotspotsmetric_type="memory"- Memory hotspotsmetric_type="gpu"- GPU hotspotsmetric_type="bottlenecks"- Performance bottlenecksmetric_type="leaks"- Memory leak detectionmetric_type="file"- File-level metricsmetric_type="functions"- Function-level metricsmetric_type="recommendations"- Optimization suggestions
Comparison & Storage (2 tools)
- compare_profiles(before_id, after_id) - Compare two profiles
- list_profiles() - View all captured profiles
Full reference: See TOOLS_REFERENCE.md
Configuration
Profiling Options
The unified profile() tool supports these options:
| Option | Type | Default | Description |
|---|---|---|---|
type |
str | required | "script" or "code" |
script_path |
str | None | Required if type="script" |
code |
str | None | Required if type="code" |
include_memory |
bool | true | Profile memory |
include_gpu |
bool | false | Profile GPU usage |
cpu_only |
bool | false | Skip memory/GPU profiling |
reduced_profile |
bool | false | Only report high-activity lines |
cpu_percent_threshold |
float | 1.0 | Minimum CPU% to report |
malloc_threshold |
int | 100 | Minimum allocation size (bytes) |
profile_only |
str | "" | Profile only paths containing this |
profile_exclude |
str | "" | Exclude paths containing this |
use_virtual_time |
bool | false | Use virtual time instead of wall time |
script_args |
list | [] | Command-line arguments for the script |
Environment Variables
SCALENE_CPU_PERCENT_THRESHOLD: Override default CPU thresholdSCALENE_MALLOC_THRESHOLD: Override default malloc threshold
Architecture
Components
- ScaleneProfiler: Async wrapper around Scalene CLI
- ProfileParser: Converts Scalene JSON to structured models
- ProfileAnalyzer: Extracts insights and hotspots
- ProfileComparator: Compares profiles for regressions
- FastMCP Server: Exposes tools via MCP protocol
Data Flow
Python Script
ā
ScaleneProfiler (subprocess)
ā
Scalene CLI (--json)
ā
Temp JSON File
ā
ProfileParser
ā
Pydantic Models (ProfileResult)
ā
Analyzer / Comparator
ā
MCP Tools
ā
LLM Client
Troubleshooting
GPU Permission Error
If you see PermissionError when profiling with GPU:
# Disable GPU profiling in test environments
result = await profiler.profile(
type="script",
script_path="script.py",
include_gpu=False
)
Profile Not Found
Profiles are stored in memory during the server session. For persistence, implement the storage interface.
Timeout Issues
Adjust the timeout parameter (if using profiler directly):
result = await profiler.profile(
type="script",
script_path="slow_script.py"
)
Development
Running Tests
# All tests with coverage
uv run pytest -v --cov=src/scalene_mcp
# Specific test file
uv run pytest tests/test_profiler.py -v
# With coverage report
uv run pytest --cov=src/scalene_mcp --cov-report=html
Code Quality
# Type checking
uv run mypy src/
# Linting
uv run ruff check src/
# Formatting
uv run ruff format src/
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Ensure all tests pass and coverage ā„ 85%
- Submit a pull request
License
MIT License - see LICENSE file for details.
Citation
If you use Scalene-MCP in research, please cite both this project and Scalene:
@software{scalene_mcp,
title={Scalene-MCP: LLM-Friendly Profiling Server},
year={2026}
}
@inproceedings{berger2020scalene,
title={Scalene: Scripting-Language Aware Profiling for Python},
author={Berger, Emery},
year={2020}
}
Support
- Issues: GitHub Issues for bug reports and feature requests
- Discussions: GitHub Discussions for questions and ideas
- Documentation: See
docs/directory
Made with ā¤ļø for the Python performance community.
Manual Installation
pip install -e .
Development
Prerequisites
- Python 3.10+
- uv (recommended) or pip
Setup
# Install dependencies
uv sync
# Run tests
just test
# Run tests with coverage
just test-cov
# Lint and format
just lint
just format
# Type check
just typecheck
# Full build (sync + lint + typecheck + test)
just build
Project Structure
scalene-mcp/
āāā src/scalene_mcp/ # Main package
ā āāā server.py # FastMCP server with tools/resources/prompts
ā āāā models.py # Pydantic data models
ā āāā profiler.py # Scalene execution wrapper
ā āāā parser.py # JSON output parser
ā āāā analyzer.py # Analysis engine
ā āāā comparator.py # Profile comparison
ā āāā recommender.py # Optimization recommendations
ā āāā storage.py # Profile persistence
ā āāā utils.py # Shared utilities
āāā tests/ # Test suite (100% coverage goal)
ā āāā fixtures/ # Test data
ā ā āāā profiles/ # Sample profile outputs
ā ā āāā scripts/ # Test Python scripts
ā āāā conftest.py # Shared test fixtures
āāā examples/ # Usage examples
āāā docs/ # Documentation
āāā pyproject.toml # Project configuration
āāā justfile # Task runner commands
āāā README.md # This file
Usage
Running the Server
# Development mode with auto-reload
fastmcp dev src/scalene_mcp/server.py
# Production mode
fastmcp run src/scalene_mcp/server.py
# Install to MCP config
fastmcp install src/scalene_mcp/server.py
Example: Profile a Script
# Through MCP client
result = await client.call_tool(
"profile",
arguments={
"script_path": "my_script.py",
"cpu": True,
"memory": True,
"gpu": False,
}
)
Example: Analyze Results
# Get analysis and recommendations
analysis = await client.call_tool(
"analyze",
arguments={"profile_id": result["profile_id"]}
)
Testing
The project maintains 100% test coverage with comprehensive test suites:
# Run all tests
uv run pytest
# Run with coverage report
uv run pytest --cov=src --cov-report=html
# Run specific test file
uv run pytest tests/test_server.py
# Run with verbose output
uv run pytest -v
Test fixtures include:
- Sample profiling scripts (fibonacci, memory-intensive, leaky)
- Realistic Scalene JSON outputs
- Edge cases and error conditions
Code Quality
This project follows strict code quality standards:
- Type Safety: 100% mypy strict mode compliance
- Linting: ruff with comprehensive rules
- Testing: 100% coverage requirement
- Style: Sleek-modern documentation, minimal functional emoji usage
- Patterns: FastMCP best practices throughout
Development Phases
Current Status: Phase 1.1 - Project Setup ā
Documentation
Editor Setup Guides:
- GitHub Copilot Setup - Using Copilot Chat with VSCode
- Claude Code Setup - Using Claude Code VSCode extension
- Cursor Setup - Using the Cursor IDE
- General VSCode Setup - General VSCode configuration
API & Usage:
- Tools Reference - Complete API documentation (7 tools)
- Quick Start - 3-step setup and basic workflows
- Examples - Real-world profiling examples
Development Roadmap
- Phase 1: Project Setup & Infrastructure ā
- Phase 2: Core Data Models (In Progress)
- Phase 3: Profiler Integration
- Phase 4: Analysis & Insights
- Phase 5: Comparison Features
- Phase 6: Resources Implementation
- Phase 7: Prompts & Workflows
- Phase 8: Testing & Quality
- Phase 9: Documentation
- Phase 10: Polish & Release
See development-plan.md for detailed roadmap.
Contributing
Contributions are welcome! Please ensure:
- All tests pass (
just test) - Linting passes (
just lint) - Type checking passes (
just typecheck) - Code coverage remains at 100%
License
[License TBD]
Links
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.