
Saros MCP Server
Enables AI agents to interact with Saros DeFi through natural language, providing tools for liquidity pool management, portfolio analytics, farming positions, and swap quotes on Solana.
README
Saros MCP Server
Model Context Protocol (MCP) Server for Saros DeFi - Exposes Saros SDK functionality as AI-accessible tools
Overview
This project implements a Model Context Protocol (MCP) server that wraps the Saros DeFi SDK, enabling AI agents, bots, and dashboards to interact with Saros liquidity pools, farms, and analytics through natural language or simple tool calls.
Features
Core MCP Tools
get_lp_positions
- Retrieve all liquidity pool positions for a walletsimulate_rebalance
- Simulate LP rebalancing based on IL thresholdportfolio_analytics
- Comprehensive portfolio metrics and risk assessmentget_farm_positions
- View farming positions and claimable rewardsswap_quote
- Get swap quotes with price impact and slippage
Demo Clients
- Test Client - Command-line testing tool
- Telegram Bot - Interactive bot for portfolio management
Quick Start
Installation
cd saros-mcp-server
npm install
Running the Server
# Start the MCP server
npm start
# Development mode with auto-reload
npm run dev
Testing
# Run the test client
npm test
Usage Examples
Using with Claude Desktop
Add to your Claude Desktop MCP settings:
{
"mcpServers": {
"saros": {
"command": "node",
"args": ["/path/to/saros-mcp-server/src/index.js"]
}
}
}
Then in Claude:
"Show me my LP positions for wallet HqB8Rf76fAwmd4qZpL81yB2SSLFzEgdoPwpWAUJ31ont"
"Analyze my portfolio for wallet HqB8Rf76fAwmd4qZpL81yB2SSLFzEgdoPwpWAUJ31ont"
"Get me a swap quote for 100 tokens from C98A4nkJXhpVZNAZdHUA95RpTF3T4whtQubL3YobiUX9 to EPjFWdd5AufqSSqeM2qN1xzybapC8G4wEGGkZwyTDt1v in pool 2wUvdZA8ZsY714Y5wUL9fkFmupJGGwzui2N74zqJWgty"
Real Working Example:
Wallet with actual LP positions: HqB8Rf76fAwmd4qZpL81yB2SSLFzEgdoPwpWAUJ31ont
(5 active positions)
Known Saros Pools:
- C98/USDC Pool:
2wUvdZA8ZsY714Y5wUL9fkFmupJGGwzui2N74zqJWgty
Using with the Telegram Bot
- Create a bot via @BotFather
- Copy your bot token
- Set environment variable:
export BOT_TOKEN="your_telegram_bot_token"
- Run the bot:
node examples/telegram-bot.js
- Chat with your bot:
/start
/wallet 5UrM9csUEDBeBqMZTuuZyHRNhbRW4vQ1MgKJDrKU1U2v
/positions
/rebalance 5
/analytics
Programmatic Usage
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
const transport = new StdioClientTransport({
command: "node",
args: ["src/index.js"],
});
const client = new Client({
name: "my-client",
version: "1.0.0",
}, {
capabilities: {},
});
await client.connect(transport);
// Call tools
const result = await client.callTool({
name: "get_lp_positions",
arguments: { wallet: "5UrM9csUEDBeBqMZTuuZyHRNhbRW4vQ1MgKJDrKU1U2v" },
});
console.log(result.content[0].text);
Project Structure
saros-mcp-server/
├── src/
│ ├── index.js # Main MCP server
│ ├── services/
│ │ ├── pool-service.js # LP pool operations
│ │ ├── farm-service.js # Farming operations
│ │ └── analytics-service.js # Analytics & IL calculations
│ └── tools/
│ ├── get-lp-positions.js
│ ├── simulate-rebalance.js
│ ├── portfolio-analytics.js
│ ├── get-farm-positions.js
│ └── swap-quote.js
├── examples/
│ ├── test-client.js # Test client
│ └── telegram-bot.js # Telegram bot demo
├── package.json
└── README.md
API Reference
get_lp_positions
Get all liquidity pool positions for a wallet.
Input:
{
"wallet": "string (Solana address)"
}
Output:
Found 2 LP position(s) for wallet: 5UrM9c...
Position 1:
- Pool: 2wUvdZ...
- LP Balance: 150.5
- Token 0: C98A4n...
- Token 1: EPjFWd...
simulate_rebalance
Simulate rebalancing strategy based on impermanent loss threshold.
Input:
{
"wallet": "string",
"threshold": "number (0-100)"
}
Output:
Rebalance Simulation for 5UrM9c...
IL Threshold: 5%
Positions Analyzed: 2
Recommendations: 1
1. Pool: 2wUvdZ...
- Current IL: 6.25%
- Severity: medium
- Action: Consider withdrawing - high IL detected
portfolio_analytics
Get comprehensive portfolio analytics.
Input:
{
"wallet": "string"
}
Output:
Portfolio Analytics for 5UrM9c...
Overview:
- Total Positions: 2
- Estimated Total Value: $1,250.00
- Average IL: 3.5%
Risk Assessment:
✅ Low Risk - Portfolio is performing well
get_farm_positions
Get all farming/staking positions.
Input:
{
"wallet": "string"
}
Output:
Farm Positions for 5UrM9c...
Total Farms: 1
Position 1:
- Farm: FW9hgA...
- LP Token: HVUeNV...
- Staked Amount: 100.0
- Pending Rewards:
• 50.5 C98
swap_quote
Get swap quote with price impact.
Input:
{
"poolAddress": "string",
"fromMint": "string",
"toMint": "string",
"amount": "number",
"slippage": "number (optional, default 0.5)"
}
Output:
Swap Quote
Input:
- Pool: 2wUvdZ...
- Amount: 100
Output:
- Expected Output: 150.5
- Minimum Output: 149.75
- Price Impact: 0.15%
- Slippage Tolerance: 0.5%
Architecture
MCP Server Layer
- Handles MCP protocol communication
- Exposes tools via stdio transport
- Routes requests to service layer
Service Layer
- PoolService: LP positions, pool info, swap quotes
- FarmService: Staking positions, rewards
- AnalyticsService: IL calculations, portfolio metrics
SDK Integration
- Uses
@saros-finance/sdk
for Solana/Saros interactions - Wraps SDK functions with error handling
- Formats data for AI-friendly consumption
Development
Adding New Tools
- Create tool handler in
src/tools/
:
export async function myNewTool(args, services) {
const { param1, param2 } = args;
// Tool logic here
return {
content: [{
type: "text",
text: "Result text"
}]
};
}
- Register in
src/index.js
:
// In ListToolsRequestSchema handler
{
name: "my_new_tool",
description: "Tool description",
inputSchema: { /* schema */ }
}
// In CallToolRequestSchema handler
case "my_new_tool":
return await myNewTool(args, this.services);
Testing
# Test with example wallet
node examples/test-client.js
# Manual testing
echo '{"jsonrpc":"2.0","method":"tools/list","id":1}' | node src/index.js
Deployment
Local Deployment
npm start
Railway/Render
- Create new service
- Connect GitHub repo
- Set build command:
npm install
- Set start command:
npm start
Docker (Optional)
FROM node:18
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
CMD ["npm", "start"]
Roadmap
- [ ] Add DLMM-specific features (advanced orders, dynamic fees)
- [ ] Implement real-time price feeds
- [ ] Add transaction execution tools
- [ ] Multi-wallet management
- [ ] Historical performance tracking
- [ ] Web dashboard UI
Contributing
Contributions welcome! Please:
- Fork the repo
- Create a feature branch
- Commit changes
- Submit a PR
License
MIT License - see LICENSE file
Hackathon Submission
Project: Saros MCP Server Category: SDK Usage & Developer Tools Hackathon: Saros $100K Hackathon
Key Innovations
- First MCP server for Saros DeFi
- AI-native portfolio management
- Natural language DeFi interactions
- Foundation for autonomous trading agents
Demo
- Test Client:
npm test
- Telegram Bot: See examples/telegram-bot.js
- Video Walkthrough: [Link TBD]
Resources
Support
- GitHub Issues: Report bugs
- Telegram: Community
- Email: your-email@example.com
Built with ❤️ for the Saros Hackathon
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.