SAP AI Core Documentation MCP Server

SAP AI Core Documentation MCP Server

Provides semantic search and intelligent access to SAP AI Core documentation for AI assistants like Claude. It enables users to search across categories, retrieve full document content, and access topic-specific information from the SAP artificial intelligence repository.

Category
Visit Server

README

SAP AI Core Documentation MCP Server

A Model Context Protocol (MCP) server providing semantic search and intelligent access to SAP AI Core documentation.

Overview

This MCP server enables AI assistants like Claude to search, retrieve, and understand SAP AI Core documentation efficiently. It provides semantic search capabilities across the entire AI Core documentation repository from SAP-docs/sap-artificial-intelligence.

Features

  • Semantic Search: Intelligent search across all SAP AI Core documentation
  • Category Filtering: Search within specific areas (administration, development, integration, concepts)
  • Document Retrieval: Get complete documentation pages with table of contents
  • Topic-Specific Documentation: Quick access to documentation for specific AI Core topics
  • Relevance Scoring: Results ranked by relevance to your query

Installation

Prerequisites

  • Node.js 20.0.0 or higher
  • npm or yarn

Quick Start

  1. Clone this repository:
git clone <repository-url>
cd dlwr-dnl-ai-core-documentation-mcp
  1. Install dependencies:
source ~/.zshrc && nvm use
npm install
  1. Clone the SAP AI Core documentation as a git submodule:
git submodule add https://github.com/SAP-docs/sap-artificial-intelligence.git docs/sap-artificial-intelligence
git submodule update --init --recursive
  1. Build the server:
npm run build

Configuration

Claude Desktop

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "sap-ai-core-docs": {
      "command": "node",
      "args": [
        "/absolute/path/to/dlwr-dnl-ai-core-documentation-mcp/build/index.js"
      ]
    }
  }
}

Custom Documentation Path

To use a different documentation location:

{
  "mcpServers": {
    "sap-ai-core-docs": {
      "command": "node",
      "args": [
        "/absolute/path/to/dlwr-dnl-ai-core-documentation-mcp/build/index.js"
      ],
      "env": {
        "SAP_AI_CORE_DOCS_PATH": "/path/to/custom/docs"
      }
    }
  }
}

Available Tools

1. search_ai_core_docs

Semantically search SAP AI Core documentation.

Parameters:

  • query (required): Search query string
  • category (optional): Filter by category ('all', 'administration', 'development', 'integration', 'concepts')
  • limit (optional): Maximum results (1-50, default: 10)

Example:

Search for "model training deployment best practices"

2. get_ai_core_document

Retrieve complete content of a specific documentation page.

Parameters:

  • path (required): Relative path to document (from search results)

Example:

Get document at path "docs/sap-ai-core/getting-started.md"

3. get_ai_core_topic

Get comprehensive documentation for a specific SAP AI Core topic.

Parameters:

  • topic_name (required): Name of the AI Core topic

Example:

Get documentation for "Model Training"

4. list_ai_core_categories

List all available documentation categories and top documents.

Example:

Show all available documentation categories

Development

Project Structure

dlwr-dnl-ai-core-documentation-mcp/
├── src/
│   ├── index.ts              # Entry point
│   ├── server.ts             # MCP server implementation
│   ├── types/
│   │   └── index.ts          # TypeScript type definitions
│   ├── indexer/
│   │   ├── markdown-parser.ts    # Markdown document parser
│   │   └── document-index.ts     # Document indexing & search
│   └── tools/
│       ├── search.ts             # Search tool implementation
│       ├── get-document.ts       # Document retrieval tool
│       ├── get-topic.ts          # Topic documentation tool
│       └── list-categories.ts    # Category listing tool
├── docs/
│   └── sap-artificial-intelligence/  # SAP AI Core docs (git submodule)
├── build/                     # Compiled JavaScript output
├── package.json
├── tsconfig.json
└── README.md

Build Commands

# Build once
npm run build

# Build and watch for changes
npm run watch

# Run the server directly
npm run dev

Testing

Test the server using the MCP Inspector:

npx @modelcontextprotocol/inspector node build/index.js

Architecture

Document Indexing

The server indexes all markdown files from the SAP AI Core documentation repository on startup:

  1. Parsing: Uses unified and remark to parse markdown with frontmatter
  2. Extraction: Extracts metadata, headings, sections, and keywords
  3. Indexing: Creates a searchable index using Fuse.js for fuzzy semantic search
  4. Categorization: Automatically categorizes documents based on folder structure

Search Strategy

  • Multi-field search: Searches across titles, headings, content, and keywords
  • Weighted scoring: Titles and keywords weighted higher than content
  • Fuzzy matching: Handles typos and partial matches
  • Context extraction: Returns relevant excerpts around matched terms

Use Cases

For delaware Netherlands Team

  • AI Core Implementations: Quick access to AI Core documentation during client projects
  • Training: Support for AI/ML enablement programs
  • Solution Design: Research AI Core capabilities and best practices
  • Troubleshooting: Find solutions for specific AI Core issues

For AI Agents (ConnectedBrain 2.0)

  • Semantic Module: Integrate as a knowledge module in multi-agent orchestration
  • Context Provider: Supply AI Core-specific context for solution generation
  • Code Assistant: Help generate AI Core-compliant code and configurations

SAP AI Core Topics Covered

  • Model Training: Training ML models using SAP AI Core
  • Model Deployment: Deploying and serving models
  • AI API: REST API for AI Core services
  • Configuration Management: Managing AI Core configurations
  • Resource Management: Managing compute resources and artifacts
  • Integration: Integrating AI Core with SAP BTP services
  • Security: Authentication, authorization, and data protection
  • Monitoring: Logging, metrics, and observability

Performance

  • Initial Index Build: ~5-10 seconds (depending on documentation size)
  • Search Queries: <100ms (in-memory search)
  • Memory Usage: ~50-100MB (indexed documents)

Roadmap

Phase 2 Enhancements

  • Vector embeddings for improved semantic search
  • Code sample extraction and indexing
  • AI Core API pattern recognition
  • Auto-update mechanism for documentation

Phase 3 Advanced Features

  • Graph database for AI Core service relationships
  • Context caching for frequently accessed docs
  • Integration with SAP Help Portal
  • Multi-language support

Contributing

This is a delaware Netherlands internal tool. For questions or contributions, contact the Data & AI team.

License

MIT License - Internal delaware Netherlands use

Support

For issues or questions:


Built with ❤️ by delaware Netherlands Data & AI Team

Part of our "platform-first, cloud-native" AI-empowered operations initiative

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured