SAP AI Core Documentation MCP Server
Provides semantic search and intelligent access to SAP AI Core documentation for AI assistants like Claude. It enables users to search across categories, retrieve full document content, and access topic-specific information from the SAP artificial intelligence repository.
README
SAP AI Core Documentation MCP Server
A Model Context Protocol (MCP) server providing semantic search and intelligent access to SAP AI Core documentation.
Overview
This MCP server enables AI assistants like Claude to search, retrieve, and understand SAP AI Core documentation efficiently. It provides semantic search capabilities across the entire AI Core documentation repository from SAP-docs/sap-artificial-intelligence.
Features
- Semantic Search: Intelligent search across all SAP AI Core documentation
- Category Filtering: Search within specific areas (administration, development, integration, concepts)
- Document Retrieval: Get complete documentation pages with table of contents
- Topic-Specific Documentation: Quick access to documentation for specific AI Core topics
- Relevance Scoring: Results ranked by relevance to your query
Installation
Prerequisites
- Node.js 20.0.0 or higher
- npm or yarn
Quick Start
- Clone this repository:
git clone <repository-url>
cd dlwr-dnl-ai-core-documentation-mcp
- Install dependencies:
source ~/.zshrc && nvm use
npm install
- Clone the SAP AI Core documentation as a git submodule:
git submodule add https://github.com/SAP-docs/sap-artificial-intelligence.git docs/sap-artificial-intelligence
git submodule update --init --recursive
- Build the server:
npm run build
Configuration
Claude Desktop
Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"sap-ai-core-docs": {
"command": "node",
"args": [
"/absolute/path/to/dlwr-dnl-ai-core-documentation-mcp/build/index.js"
]
}
}
}
Custom Documentation Path
To use a different documentation location:
{
"mcpServers": {
"sap-ai-core-docs": {
"command": "node",
"args": [
"/absolute/path/to/dlwr-dnl-ai-core-documentation-mcp/build/index.js"
],
"env": {
"SAP_AI_CORE_DOCS_PATH": "/path/to/custom/docs"
}
}
}
}
Available Tools
1. search_ai_core_docs
Semantically search SAP AI Core documentation.
Parameters:
query(required): Search query stringcategory(optional): Filter by category ('all', 'administration', 'development', 'integration', 'concepts')limit(optional): Maximum results (1-50, default: 10)
Example:
Search for "model training deployment best practices"
2. get_ai_core_document
Retrieve complete content of a specific documentation page.
Parameters:
path(required): Relative path to document (from search results)
Example:
Get document at path "docs/sap-ai-core/getting-started.md"
3. get_ai_core_topic
Get comprehensive documentation for a specific SAP AI Core topic.
Parameters:
topic_name(required): Name of the AI Core topic
Example:
Get documentation for "Model Training"
4. list_ai_core_categories
List all available documentation categories and top documents.
Example:
Show all available documentation categories
Development
Project Structure
dlwr-dnl-ai-core-documentation-mcp/
├── src/
│ ├── index.ts # Entry point
│ ├── server.ts # MCP server implementation
│ ├── types/
│ │ └── index.ts # TypeScript type definitions
│ ├── indexer/
│ │ ├── markdown-parser.ts # Markdown document parser
│ │ └── document-index.ts # Document indexing & search
│ └── tools/
│ ├── search.ts # Search tool implementation
│ ├── get-document.ts # Document retrieval tool
│ ├── get-topic.ts # Topic documentation tool
│ └── list-categories.ts # Category listing tool
├── docs/
│ └── sap-artificial-intelligence/ # SAP AI Core docs (git submodule)
├── build/ # Compiled JavaScript output
├── package.json
├── tsconfig.json
└── README.md
Build Commands
# Build once
npm run build
# Build and watch for changes
npm run watch
# Run the server directly
npm run dev
Testing
Test the server using the MCP Inspector:
npx @modelcontextprotocol/inspector node build/index.js
Architecture
Document Indexing
The server indexes all markdown files from the SAP AI Core documentation repository on startup:
- Parsing: Uses
unifiedandremarkto parse markdown with frontmatter - Extraction: Extracts metadata, headings, sections, and keywords
- Indexing: Creates a searchable index using Fuse.js for fuzzy semantic search
- Categorization: Automatically categorizes documents based on folder structure
Search Strategy
- Multi-field search: Searches across titles, headings, content, and keywords
- Weighted scoring: Titles and keywords weighted higher than content
- Fuzzy matching: Handles typos and partial matches
- Context extraction: Returns relevant excerpts around matched terms
Use Cases
For delaware Netherlands Team
- AI Core Implementations: Quick access to AI Core documentation during client projects
- Training: Support for AI/ML enablement programs
- Solution Design: Research AI Core capabilities and best practices
- Troubleshooting: Find solutions for specific AI Core issues
For AI Agents (ConnectedBrain 2.0)
- Semantic Module: Integrate as a knowledge module in multi-agent orchestration
- Context Provider: Supply AI Core-specific context for solution generation
- Code Assistant: Help generate AI Core-compliant code and configurations
SAP AI Core Topics Covered
- Model Training: Training ML models using SAP AI Core
- Model Deployment: Deploying and serving models
- AI API: REST API for AI Core services
- Configuration Management: Managing AI Core configurations
- Resource Management: Managing compute resources and artifacts
- Integration: Integrating AI Core with SAP BTP services
- Security: Authentication, authorization, and data protection
- Monitoring: Logging, metrics, and observability
Performance
- Initial Index Build: ~5-10 seconds (depending on documentation size)
- Search Queries: <100ms (in-memory search)
- Memory Usage: ~50-100MB (indexed documents)
Roadmap
Phase 2 Enhancements
- Vector embeddings for improved semantic search
- Code sample extraction and indexing
- AI Core API pattern recognition
- Auto-update mechanism for documentation
Phase 3 Advanced Features
- Graph database for AI Core service relationships
- Context caching for frequently accessed docs
- Integration with SAP Help Portal
- Multi-language support
Contributing
This is a delaware Netherlands internal tool. For questions or contributions, contact the Data & AI team.
License
MIT License - Internal delaware Netherlands use
Support
For issues or questions:
- Internal: delaware Netherlands Data & AI team
- Documentation: SAP AI Core Official Docs
- GitHub: SAP AI Core Documentation Repository
Built with ❤️ by delaware Netherlands Data & AI Team
Part of our "platform-first, cloud-native" AI-empowered operations initiative
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.