
SAGE-MCP
A universal AI assistant MCP server that transforms Claude into a multi-talented development assistant with intelligent mode selection, conversation continuity, and smart file handling. Automatically adapts to different tasks like debugging, code analysis, planning, and testing while supporting multiple AI providers and maintaining context across conversations.
README
🧙 SAGE-MCP: Simple AI Guidance Engine for Claude
Universal AI assistant MCP server with intelligent mode selection, conversation continuity, and smart file handling
SAGE-MCP transforms Claude into a multi-talented development assistant that adapts to your needs. Whether you're debugging code, planning architecture, writing tests, or having a technical discussion, SAGE automatically selects the right approach and model for optimal results.
✨ Key Features
🎯 Intelligent Mode System
- chat - Natural conversations with context awareness
- analyze - Deep code analysis and pattern recognition
- review - Comprehensive code reviews with actionable feedback
- debug - Systematic debugging and root cause analysis
- plan - Strategic project planning and architecture design
- test - Test generation with coverage analysis
- refactor - Code improvement and modernization
- think - Deep reasoning with adjustable thinking depth
🔄 Conversation Continuity
- Seamless multi-turn conversations across different modes
- Automatic context preservation between tool calls
- Smart file deduplication - never re-read the same files
- Thread-based memory system for long-running tasks
🤖 Smart Model Selection
- Auto mode - Intelligent model selection based on task complexity
- Support for multiple providers: OpenAI, Anthropic, Google, OpenRouter
- Model restrictions via environment variables for cost control
- Thinking depth control: minimal (0.5%), low (8%), medium (33%), high (67%), max (100%)
📁 Intelligent File Handling
- embedded - Full file content in context (default)
- summary - Token-efficient summaries for large codebases
- reference - File storage with ID references
- Automatic directory expansion and smart deduplication
- Security validation for all file operations
🌐 Web Search Integration
- Real-time documentation lookup
- Best practices and current standards
- Framework and library research
- Error and issue investigation
🎨 Mode Specializations
Mode | Temperature | Description | Best For |
---|---|---|---|
chat | 0.5 | Natural conversations with balanced creativity | Q&A, brainstorming, explanations |
analyze | 0.2 | Focused precision for code analysis | Architecture review, pattern detection |
review | 0.3 | Systematic evaluation with consistent standards | Security audits, best practices |
debug | 0.1 | Deterministic analysis for troubleshooting | Error investigation, root cause analysis |
plan | 0.4 | Strategic thinking for project planning | Architecture design, task breakdown |
test | 0.2 | Accurate test generation with edge cases | Unit tests, integration tests |
refactor | 0.3 | Careful improvements preserving functionality | Code modernization, optimization |
think | 0.7 | Creative problem solving with deep reasoning | Complex algorithms, system design |
🚀 Quick Start
Installation
# Clone the repository
git clone https://github.com/david-strejc/sage-mcp
cd sage-mcp
# Install dependencies
pip install -r requirements.txt
# Configure your API keys
export OPENAI_API_KEY="your-key-here"
export ANTHROPIC_API_KEY="your-key-here"
export GOOGLE_API_KEY="your-key-here"
export OPENROUTER_API_KEY="your-key-here"
Claude Desktop Configuration
Add to your Claude Desktop MCP settings:
{
"mcpServers": {
"sage": {
"command": "python",
"args": ["/path/to/sage-mcp/server.py"],
"env": {
"OPENAI_API_KEY": "your-key",
"ANTHROPIC_API_KEY": "your-key",
"DEFAULT_MODEL": "gpt-4o",
"DEFAULT_PROVIDER": "openai"
}
}
}
}
📖 Usage Examples
Basic Chat
// In Claude:
Use sage tool to explain how async/await works in Python
Code Analysis with Files
// Analyze specific files
Use sage tool in analyze mode to review the architecture of ./src/api/
// With model selection
Use sage with model gpt-4o to analyze performance bottlenecks in server.py
Multi-turn Conversations
// First turn
Use sage to help me design a caching system
// Continue the conversation (Claude will auto-continue)
Now let's implement the LRU cache we discussed
// Files are automatically deduplicated across turns
Deep Thinking Mode
// For complex problems requiring deep reasoning
Use sage in think mode with thinking_mode="high" to solve this algorithmic challenge: [problem description]
Smart File Handling
// Token-efficient mode for large codebases
Use sage with file_handling_mode="summary" to review the entire project structure
// Reference mode for iterative work
Use sage with file_handling_mode="reference" to start refactoring the database layer
⚙️ Configuration
Environment Variables
# Provider Configuration
DEFAULT_PROVIDER=openai # Default: auto
DEFAULT_MODEL=gpt-4o # Default: auto
FALLBACK_MODEL=gpt-4o-mini # Fallback for errors
# Model Restrictions (optional)
ALLOWED_MODELS=gpt-4o,gpt-4o-mini,claude-3-5-sonnet
DISALLOWED_MODELS=o1-preview,o1 # Expensive models to exclude
# Feature Flags
WEBSEARCH_ENABLED=true # Enable web search
FILE_SECURITY_CHECK=true # Validate file paths
AUTO_MODEL_SELECTION=true # Smart model selection
# Token Limits
MAX_TOKENS_GPT4O=128000
MAX_TOKENS_CLAUDE=200000
MAX_THINKING_TOKENS_O1=100000
Mode-Specific Temperatures
Default temperatures optimized for each mode:
- chat: 0.5 - Balanced creativity
- analyze: 0.2 - Focused precision
- review: 0.3 - Systematic evaluation
- debug: 0.1 - Deterministic analysis
- plan: 0.4 - Strategic thinking
- test: 0.2 - Accurate test generation
- refactor: 0.3 - Careful improvements
- think: 0.7 - Creative problem solving
🔧 Advanced Features
Conversation Continuation
# Start conversation
response = sage(mode="chat", prompt="Let's design a web app")
# Returns: continuation_id: abc123
# Continue in same mode
sage(mode="chat", prompt="What database should we use?", continuation_id="abc123")
# Switch modes seamlessly
sage(mode="analyze", prompt="Review our database schema",
files=["/db/schema.sql"], continuation_id="abc123")
Smart File Handling
# Multiple modes available
sage(mode="review",
files=["/src", "/tests"], # Auto-expands directories
file_handling_mode="embedded", # Full content (default)
prompt="Security review")
sage(mode="analyze",
files=["/large/codebase"],
file_handling_mode="summary", # Summaries only (saves tokens)
prompt="Architecture overview")
sage(mode="debug",
files=["/logs"],
file_handling_mode="reference", # Store with IDs
prompt="Analyze error patterns")
Model Restrictions
# Environment variables for cost control
OPENAI_ALLOWED_MODELS=o3-mini,gpt-4o-mini
GOOGLE_ALLOWED_MODELS=gemini-2.0-flash-exp,gemini-1.5-pro
BLOCKED_MODELS=gpt-4,claude-opus
DISABLED_MODEL_PATTERNS=expensive,legacy
# Auto mode requires model selection when restricted
DEFAULT_MODEL=auto # Forces explicit model choice
Supported Models
Provider | Models | Configuration |
---|---|---|
OpenAI | gpt-4o, gpt-4o-mini, o1, o3-mini | OPENAI_API_KEY |
Anthropic | claude-3-5-sonnet, claude-3-5-haiku | ANTHROPIC_API_KEY |
gemini-2.0-flash-exp, gemini-1.5-pro | GOOGLE_API_KEY | |
OpenRouter | 100+ models from all providers | OPENROUTER_API_KEY |
Custom/Ollama | llama3.2, mistral, codestral | CUSTOM_API_URL |
Complete Configuration Reference
Variable | Description | Example |
---|---|---|
API Keys | ||
OPENAI_API_KEY |
OpenAI API key | sk-... |
ANTHROPIC_API_KEY |
Anthropic Claude API key | sk-ant-... |
GEMINI_API_KEY / GOOGLE_API_KEY |
Google Gemini API key | AIzaSy... |
OPENROUTER_API_KEY |
OpenRouter API key | sk-or-... |
XAI_API_KEY |
xAI (Grok) API key | xai-... |
CUSTOM_API_URL |
Custom/Ollama API endpoint | http://localhost:11434 |
CUSTOM_API_KEY |
Custom API key (if required) | custom-key |
Model Selection | ||
DEFAULT_MODEL |
Default model (auto for selection) |
o3 , gpt-5 , auto |
Model Restrictions | ||
OPENAI_ALLOWED_MODELS |
Allowed OpenAI models | o3,gpt-5 |
GOOGLE_ALLOWED_MODELS |
Allowed Google models | gemini-2.5-pro,gemini-2.5-flash |
ANTHROPIC_ALLOWED_MODELS |
Allowed Anthropic models | claude-3-5-sonnet |
BLOCKED_MODELS |
Blocked models (any provider) | gpt-4,o3-mini |
DISABLED_MODEL_PATTERNS |
Disable by pattern | anthropic,claude,mini |
Limits & Performance | ||
MAX_FILE_SIZE |
Maximum file size in bytes | 5242880 (5MB) |
MCP_PROMPT_SIZE_LIMIT |
MCP transport limit | 50000 |
MAX_CONVERSATION_TURNS |
Max turns per conversation | 20 |
CONVERSATION_TIMEOUT_HOURS |
Conversation timeout | 3 |
Memory & Storage | ||
REDIS_URL |
Redis connection for memory | redis://localhost:6379/0 |
REDIS_DB |
Redis database number | 0 |
Temperature Overrides | ||
TEMPERATURE_CHAT |
Chat mode temperature | 0.7 |
TEMPERATURE_ANALYZE |
Analyze mode temperature | 0.3 |
TEMPERATURE_DEBUG |
Debug mode temperature | 0.2 |
TEMPERATURE_PLAN |
Plan mode temperature | 0.4 |
TEMPERATURE_TEST |
Test mode temperature | 0.3 |
TEMPERATURE_REFACTOR |
Refactor mode temperature | 0.4 |
TEMPERATURE_REVIEW |
Review mode temperature | 0.5 |
TEMPERATURE_THINK |
Think mode temperature | 0.8 |
🏗️ Architecture
sage-mcp/
├── server.py # FastMCP server entry point
├── config.py # Configuration management
├── tools/
│ └── sage.py # Universal SAGE tool
├── modes/ # Specialized AI modes
│ ├── base.py # Base mode handler
│ ├── chat.py # Conversational mode
│ ├── analyze.py # Code analysis mode
│ ├── debug.py # Debugging mode
│ └── ...
├── providers/ # AI provider integrations
│ ├── openai.py
│ ├── anthropic.py
│ ├── gemini.py
│ └── openrouter.py
├── models/ # Model management
│ ├── manager.py # Intelligent model selection
│ └── config.yaml # Model capabilities
└── utils/ # Utilities
├── files.py # File handling
├── memory.py # Conversation memory
├── models.py # Model restrictions
└── security.py # Security validation
🧪 Advanced Features
Model Restrictions
Control which models can be used to manage costs:
# Allow only specific models
export ALLOWED_MODELS="gpt-4o-mini,claude-3-haiku"
# Exclude expensive models
export DISALLOWED_MODELS="o1-preview,claude-3-opus"
Conversation Memory
SAGE maintains conversation context across tool calls:
# Automatically continues conversations
# Previous context and files are preserved
# Smart deduplication prevents re-reading
Custom Providers
Add custom AI providers by implementing the base provider interface:
class CustomProvider(BaseProvider):
async def generate(self, messages, **kwargs):
# Your implementation
pass
🤝 Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Setup
# Install dev dependencies
pip install -r requirements-dev.txt
# Run tests
pytest
# Format code
black .
ruff check .
📄 License
MIT License - see LICENSE for details.
🙏 Acknowledgments
- Built on FastMCP framework
- Inspired by zen-mcp-server
- Powered by Claude MCP protocol
🔗 Links
SAGE-MCP - Your intelligent AI assistant that adapts to how you work 🧙✨
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.