RustFS File Management MCP Server

RustFS File Management MCP Server

Enables AI to upload local files to RustFS storage service and download files from HTTP/HTTPS URLs to local paths. Built with FastMCP and RustFS SDK for seamless file operations through natural language.

Category
Visit Server

README

FS MCP Server

基于FastMCP构建的文件上传/下载MCP服务,集成RustFS SDK实现AI自动调用文件存储和下载功能。

功能特性

  • 文件上传: 支持上传本地文件到RustFS存储服务
  • 文件下载: 支持从任意HTTP/HTTPS URL下载文件到本地
  • 异步处理: 基于asyncio的异步文件操作
  • 错误处理: 完善的错误处理和异常管理
  • 配置验证: 启动时验证必需的环境变量配置

安装

1. 克隆项目

git clone <repository-url>
cd fs_mcp

2. 安装依赖

pip install -e .

或安装开发依赖:

pip install -e ".[dev]"

3. 配置环境变量

复制环境变量模板并配置:

cp .env.example .env

编辑 .env 文件:

# RustFS配置
FS_URL=https://your-rustfs-endpoint.com
FS_AK=your-access-key
FS_SK=your-secret-key

# 可选配置
TIMEOUT=30

使用方法

启动服务

# 直接运行
python -m src.server

# 或使用模块方式
python -m src

MCP工具

1. upload_file

上传本地文件到RustFS存储服务。

参数:

  • file_path (string): 本地文件的绝对路径

返回值:

{
  "success": true,
  "filename": "example.txt",
  "size": 1024,
  "content_type": "text/plain",
  "access_url": "https://fs.example.com/files/example.txt",
  "file_id": "example.txt",
  "message": "文件 'example.txt' 上传成功"
}

2. download_file

从指定URL下载文件到本地路径。

参数:

  • url (string): 要下载的文件URL
  • download_path (string): 本地保存路径

返回值:

{
  "success": true,
  "url": "https://example.com/file.pdf",
  "file_path": "/path/to/save/file.pdf",
  "filename": "file.pdf",
  "size": 2048000,
  "content_type": "application/pdf",
  "message": "文件 'file.pdf' 下载成功"
}

使用示例

文件上传示例

# 通过MCP客户端调用上传工具
result = await mcp_client.call_tool("upload_file", {
    "file_path": "/home/user/documents/report.pdf"
})

文件下载示例

# 下载文件到指定目录
result = await mcp_client.call_tool("download_file", {
    "url": "https://example.com/data.csv",
    "download_path": "/home/user/downloads/"
})

# 下载文件到指定路径
result = await mcp_client.call_tool("download_file", {
    "url": "https://example.com/image.png",
    "download_path": "/home/user/downloads/saved_image.png"
})

错误处理

服务提供详细的错误信息:

常见错误类型

  • FileNotFoundError: 文件不存在
  • ValueError: 参数无效或URL格式错误
  • RuntimeError: 上传/下载操作失败
  • ConfigurationError: 环境变量配置错误

错误示例

# 文件不存在
try:
    await mcp_client.call_tool("upload_file", {
        "file_path": "/nonexistent/file.txt"
    })
except FileNotFoundError as e:
    print(f"错误: {e}")

# URL无效
try:
    await mcp_client.call_tool("download_file", {
        "url": "invalid-url",
        "download_path": "/tmp/"
    })
except ValueError as e:
    print(f"错误: {e}")

开发

项目结构

fs_mcp/
├── src/
│   ├── __init__.py          # 包初始化
│   ├── __main__.py          # 命令行入口
│   ├── server.py            # MCP服务器主程序
│   ├── config.py            # 配置管理
│   ├── rustfs_client.py     # RustFS客户端
│   ├── upload_tool.py       # 上传工具
│   ├── download_tool.py     # 下载工具
│   ├── exceptions.py        # 自定义异常
│   └── utils.py             # 工具函数
├── pyproject.toml           # 项目配置
├── .env.example             # 环境变量模板
└── README.md               # 项目文档

运行测试

# 安装开发依赖
pip install -e ".[dev]"

# 运行测试
pytest

代码格式化

# 使用black格式化代码
black src/

# 使用ruff检查代码质量
ruff check src/

配置说明

必需环境变量

  • FS_URL: RustFS服务端点URL
  • FS_AK: RustFS访问密钥
  • FS_SK: RustFS密钥

可选环境变量

  • TIMEOUT: 请求超时时间(秒),默认30

RustFS API要求

本服务假设RustFS提供以下API端点:

  • POST /api/upload: 文件上传
  • GET /api/files/{file_id}: 获取文件信息

上传请求格式:

  • Method: POST
  • Content-Type: multipart/form-data
  • Headers: Authorization: Bearer {access_key}:{secret_key}
  • Files: file (文件内容)
  • Data: filename (文件名), size (文件大小)

许可证

MIT License

贡献

欢迎提交Issue和Pull Request来改进这个项目。

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured