Rubber Duck MCP
Brings rubber duck debugging to AI-powered IDEs by providing a tool for articulating problems and clarifying logic in natural language. It helps developers and AI agents reveal hidden assumptions and surface solutions through structured self-explanation and reflection.
README
Rubber Duck MCP
Description
Rubber Duck MCP is a Model Context Protocol (MCP) tool that brings the power of rubber duck debugging to your AI development environment. Rubber duck debugging is a proven technique in software engineering, where articulating a problem in natural language—often to an inanimate object like a rubber duck—can illuminate solutions and clarify thought processes. This method, first popularized in The Pragmatic Programmer (Hunt & Thomas, 1999), is widely recognized for its effectiveness in:
- Revealing hidden assumptions and logical errors
- Encouraging step-by-step reasoning
- Facilitating deeper understanding through explanation
- Reducing cognitive load by externalizing thought
"In describing what the code is supposed to do and observing what it actually does, any incongruity between these two becomes apparent." — Wikipedia: Rubber Duck Debugging
By integrating this method into an LLM-powered IDE, Rubber Duck MCP enables developers and AI agents to:
- Debug more effectively by explaining problems to a non-judgmental, always-available listener
- Enhance LLM reasoning by prompting the model to articulate and reflect on its own logic
- Accelerate problem-solving by surfacing solutions through structured self-explanation
For further reading:
- Rubber Duck Debugging (rubberduckdebugging.com)
- The Psychology Underlying the Power of Rubber Duck Debugging
Installation
Prerequisites
- Python 3.8+
- fastmcp (install via pip)
Steps
- Clone the repository:
git clone https://github.com/Omer-Sadeh/RubberDuckMCP.git cd RubberDuckMCP - Create and activate a virtual environment (recommended):
python3 -m venv .venv source .venv/bin/activate - Install dependencies:
pip install -r requirements.txt - Add Rubber Duck MCP to Cursor (or another AI IDE supporting MCP):
- Open your
.cursor/mcp.jsonfile (or the equivalent configuration for your IDE). - Add an entry for Rubber Duck MCP, specifying the venv's Python executable and the path to
RubberMCP.py. For example:{ "mcpServers": { "rubber-duck": { "command": "/absolute/path/to/RubberDuckMCP/.venv/bin/python", "args": [ "/absolute/path/to/RubberDuckMCP/RubberMCP.py" ] } } } - Adjust the
commandandargsfields to match your virtual environment's Python executable and the path toRubberMCP.pyon your system. - Save the file and restart Cursor (or your IDE) to load the new MCP server.
- Open your
Usage
Once configured, use the explain_to_duck tool to articulate your problem or code issue. The Rubber Duck MCP will listen and respond, helping you clarify your thinking and uncover solutions.
License
This project is licensed under the MIT License. Everyone is welcome to contribute, fork, and copy this repository. Collaboration and open-source contributions are highly encouraged!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.