Robotics MCP Server
Provides unified control for both physical robots (ROS-based like Moorebot Scout, Unitree) and virtual robots in Unity3D/VRChat, enabling multi-robot coordination, environment generation, and automated 3D model creation.
README
Robotics MCP Server
Unified robotics control via MCP - Physical and virtual robots (bot + vbot)
๐ฏ Overview
Robotics MCP Server provides unified control for both physical robots (ROS-based) and virtual robots (Unity/VRChat), with a focus on Moorebot Scout, Unitree robots, and virtual robotics testing.
Key Features
- Physical Robot Control: Moorebot Scout (ROS 1.4), Unitree Go2/G1
- YDLIDAR SuperLight (95g) LiDAR integration for Scout
- Virtual Robot Control: Unity3D/VRChat/Resonite integration via existing MCP servers
- ROS Bridge Integration: ROS 1.4 (Melodic) via rosbridge_suite
- Multi-Robot Coordination: Physical and virtual robots together
- World Labs Marble/Chisel: Environment generation and import
- Dual Transport: stdio (MCP) + HTTP (FastAPI) endpoints
- MCP Server Composition: Integrates with
osc-mcp,unity3d-mcp,vrchat-mcp,avatar-mcp,blender-mcp,gimp-mcp - Robot Model Creation: Automated 3D model creation using
blender-mcp(geometry) +gimp-mcp(textures)
๐ Documentation
- Unity Vbot Instantiation Guide - Complete guide for instantiating virtual robots in Unity3D with proper terminology
๐ Quick Start
Installation
# Clone repository
git clone https://github.com/sandraschi/robotics-mcp.git
cd robotics-mcp
# Install dependencies
pip install -e ".[dev]"
# Or install from PyPI (when published)
pip install robotics-mcp
Configuration
Create configuration file at ~/.robotics-mcp/config.yaml:
robotics:
moorebot_scout:
enabled: false
robot_id: "scout_01"
ip_address: "192.168.1.100"
port: 9090
mock_mode: true
virtual:
enabled: true
platform: "unity"
unity:
host: "localhost"
port: 8080
mcp_integration:
osc_mcp:
enabled: true
prefix: "osc"
unity3d_mcp:
enabled: true
prefix: "unity"
vrchat_mcp:
enabled: true
prefix: "vrchat"
avatar_mcp:
enabled: true
prefix: "avatar"
blender_mcp:
enabled: true
prefix: "blender"
gimp_mcp:
enabled: true
prefix: "gimp"
server:
enable_http: true
http_port: 8080
log_level: "INFO"
Running the Server
stdio Mode (MCP Protocol)
python -m robotics_mcp.server --mode stdio
HTTP Mode (FastAPI)
python -m robotics_mcp.server --mode http --port 8080
Dual Mode (Both stdio + HTTP)
python -m robotics_mcp.server --mode dual --port 8080
๐ ๏ธ Usage
MCP Tools
Robot Control
# Get robot status
await robot_control(robot_id="scout_01", action="get_status")
# Move robot
await robot_control(
robot_id="scout_01",
action="move",
linear=0.2,
angular=0.0
)
# Stop robot
await robot_control(robot_id="scout_01", action="stop")
Virtual Robotics
# Spawn virtual robot in Unity
await virtual_robotics(
robot_type="scout",
action="spawn_robot",
platform="unity",
position={"x": 0, "y": 0, "z": 0}
)
# Load Marble environment
await virtual_robotics(
action="load_environment",
environment="stroheckgasse_apartment",
platform="unity"
)
Robot Model Tools
# Create Scout model from scratch (uses blender-mcp + gimp-mcp)
await robot_model_create(
robot_type="scout",
output_path="D:/Models/scout_model.fbx",
format="fbx",
dimensions={"length": 0.115, "width": 0.10, "height": 0.08},
create_textures=True,
texture_style="realistic"
)
# Import robot model into Unity
await robot_model_import(
robot_type="scout",
model_path="D:/Models/scout_model.fbx",
format="fbx",
platform="unity",
project_path="D:/Projects/UnityRobots"
)
# Convert model between formats
await robot_model_convert(
source_path="D:/Models/scout.fbx",
source_format="fbx",
target_format="glb",
target_path="D:/Models/scout.glb"
)
HTTP API
Health Check
curl http://localhost:8080/api/v1/health
List Robots
curl http://localhost:8080/api/v1/robots
Control Robot
curl -X POST http://localhost:8080/api/v1/robots/scout_01/control \
-H "Content-Type: application/json" \
-d '{"action": "move", "linear": 0.2, "angular": 0.0}'
List Tools
curl http://localhost:8080/api/v1/tools
Call Tool
curl -X POST http://localhost:8080/api/v1/tools/robot_control \
-H "Content-Type: application/json" \
-d '{"robot_id": "scout_01", "action": "get_status"}'
๐ Documentation
- Comprehensive Project Notes ๐ Complete project documentation!
- VRM vs Robot Models ๐ค VRM format guide - when to use VRM vs FBX/GLB
- Unity Vbot Instantiation Guide ๐ฎ Complete guide for instantiating virtual robots in Unity3D
- Implementation Plan
- Quick Start: VRChat โก Get Scout into VRChat!
- ROS 1.4 Local Setup ๐ณ Full local ROS environment for Scout!
- VRChat Integration Guide
- VRChat Scout Setup - Complete guide
- Architecture
- API Reference
- MCP Integration
๐งช Testing
# Run all tests
pytest
# Run unit tests only
pytest tests/unit
# Run integration tests
pytest tests/integration
# Run with coverage
pytest --cov=robotics_mcp --cov-report=html
๐ง Development
Project Structure
robotics-mcp/
โโโ src/robotics_mcp/
โ โโโ server.py # Main FastMCP server
โ โโโ clients/ # Robot client implementations
โ โโโ integrations/ # MCP server integration wrappers
โ โโโ tools/ # Portmanteau tool implementations
โ โโโ utils/ # Utilities (config, state, mock data)
โโโ tests/
โ โโโ unit/ # Unit tests
โ โโโ integration/ # Integration tests
โโโ docs/ # Documentation
โโโ scripts/ # Utility scripts
โโโ mcpb/ # MCPB packaging
Code Quality
# Format code
black src/ tests/
# Lint code
ruff check src/ tests/
# Type checking
mypy src/
๐ค Contributing
Contributions welcome! Please see CONTRIBUTING.md for guidelines.
๐ License
MIT License - see LICENSE for details.
๐ Acknowledgments
- FastMCP framework
- ROS community
- Unity3D, VRChat, World Labs Marble/Chisel
- MCP ecosystem contributors
Status: Beta - Virtual robotics (vbot) prioritized, physical robot support coming after hardware arrives (XMas 2025)
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases