Research Powerpack MCP

Research Powerpack MCP

Enables AI assistants to perform comprehensive research by searching Google, mining Reddit discussions, scraping web content with JS rendering, and synthesizing findings with citations into structured context.

Category
Visit Server

README

<h1 align="center">🔬 Research Powerpack MCP 🔬</h1> <h3 align="center">Stop tab-hopping for research. Start getting structured context.</h3>

<p align="center"> <strong> <em>The ultimate research toolkit for your AI coding assistant. It searches the web, mines Reddit, scrapes any URL, and synthesizes everything into perfectly structured context your LLM actually understands.</em> </strong> </p>

<p align="center"> <!-- Package Info --> <a href="https://www.npmjs.com/package/mcp-researchpowerpack"><img alt="npm" src="https://img.shields.io/npm/v/mcp-researchpowerpack.svg?style=flat-square&color=4D87E6"></a> <a href="#"><img alt="node" src="https://img.shields.io/badge/node-18+-4D87E6.svg?style=flat-square"></a>   •   <!-- Features --> <a href="https://opensource.org/licenses/MIT"><img alt="license" src="https://img.shields.io/badge/License-MIT-F9A825.svg?style=flat-square"></a> <a href="#"><img alt="platform" src="https://img.shields.io/badge/platform-macOS_|Linux|_Windows-2ED573.svg?style=flat-square"></a> </p>

<p align="center"> <img alt="modular" src="https://img.shields.io/badge/🧩_modular-use_1_tool_or_all_5-2ED573.svg?style=for-the-badge"> <img alt="zero crash" src="https://img.shields.io/badge/💪_zero_crash-missing_keys_=_helpful_errors-2ED573.svg?style=for-the-badge"> </p>

<div align="center">

🧭 Quick Navigation

⚡ Get Started🎯 Why Research Powerpack🎮 Tools⚙️ Configuration📚 Examples

</div>


research-powerpack-mcp is the research assistant your AI has been missing. Stop asking your LLM to guess about things it doesn't know. This MCP server acts like a senior researcher -- searching the web, mining Reddit discussions, scraping documentation, and synthesizing everything into structured context so your AI can give you answers you can actually trust.

<div align="center"> <table> <tr> <td align="center"> <h3>🔍</h3> <b>Batch Web Search</b><br/> <sub>100 keywords in parallel</sub> </td> <td align="center"> <h3>💬</h3> <b>Reddit Mining</b><br/> <sub>Real opinions, not marketing</sub> </td> <td align="center"> <h3>🌐</h3> <b>Universal Scraping</b><br/> <sub>JS rendering + geo-targeting</sub> </td> <td align="center"> <h3>🧠</h3> <b>Deep Research</b><br/> <sub>AI synthesis with citations</sub> </td> </tr> </table> </div>

Here's how it works:

  • You: "What's the best database for my use case?"
  • AI + Powerpack: Searches Google, mines Reddit threads, scrapes docs, synthesizes findings.
  • You: Get an actually informed answer with real community opinions and citations.
  • Result: Better decisions, faster. No more juggling 47 browser tabs.

🎯 Why Research Powerpack

Manual research is tedious and error-prone. research-powerpack-mcp replaces that entire workflow with a single integrated pipeline.

<table align="center"> <tr> <td align="center"><b>❌ Without Research Powerpack</b></td> <td align="center"><b>✅ With Research Powerpack</b></td> </tr> <tr> <td> <ol> <li>Open 15 browser tabs.</li> <li>Skim Stack Overflow answers from 2019.</li> <li>Search Reddit, get distracted along the way.</li> <li>Copy-paste random snippets to your AI.</li> <li>Get a mediocre answer from confused context.</li> </ol> </td> <td> <ol> <li>Ask your AI to research it.</li> <li>AI searches, scrapes, mines Reddit automatically.</li> <li>Receive synthesized insights with sources.</li> <li>Make an informed decision.</li> <li>Move on to the work that matters. ☕</li> </ol> </td> </tr> </table>

This isn't just fetching random pages. Research Powerpack builds high-signal, low-noise context with CTR-weighted ranking, smart comment allocation, and intelligent token distribution that prevents massive responses from breaking your LLM's context window.


🚀 Get Started in 60 Seconds

1. Install

npm install research-powerpack-mcp

2. Configure Your MCP Client

<div align="center">

Client Config File Docs
🖥️ Claude Desktop claude_desktop_config.json Setup
⌨️ Claude Code ~/.claude.json or CLI Setup
🎯 Cursor .cursor/mcp.json Setup
🏄 Windsurf MCP settings Setup

</div>

Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "research-powerpack": {
      "command": "npx",
      "args": ["mcp-researchpowerpack"],
      "env": {
        "SERPER_API_KEY": "your_key",
        "REDDIT_CLIENT_ID": "your_id",
        "REDDIT_CLIENT_SECRET": "your_secret",
        "SCRAPEDO_API_KEY": "your_key",
        "OPENROUTER_API_KEY": "your_key"
      }
    }
  }
}

or quick install (for macOS):

cat ~/Library/Application\ Support/Claude/claude_desktop_config.json | jq '.mcpServers["research-powerpack"] = {
  "command": "npx",
  "args": ["research-powerpack-mcp@latest"],
  "disabled": false,
  "env": {
    "OPENROUTER_API_KEY": "xxx",
    "REDDIT_CLIENT_ID": "xxx",
    "REDDIT_CLIENT_SECRET": "xxx",
    "RESEARCH_MODEL": "xxxx",
    "SCRAPEDO_API_KEY": "xxx",
    "SERPER_API_KEY": "xxxx"
  }
}' | tee ~/Library/Application\ Support/Claude/claude_desktop_config.json

Claude Code (CLI)

One command to set everything up:

claude mcp add research-powerpack npx \
  --scope user \
  --env SERPER_API_KEY=your_key \
  --env REDDIT_CLIENT_ID=your_id \
  --env REDDIT_CLIENT_SECRET=your_secret \
  --env OPENROUTER_API_KEY=your_key \
  --env OPENROUTER_BASE_URL=https://openrouter.ai/api/v1 \
  --env RESEARCH_MODEL=x-ai/grok-4.1-fast \
  -- research-powerpack-mcp

Or manually add to ~/.claude.json:

{
  "mcpServers": {
    "research-powerpack": {
      "command": "npx",
      "args": ["mcp-researchpowerpack"],
      "env": {
        "SERPER_API_KEY": "your_key",
        "REDDIT_CLIENT_ID": "your_id",
        "REDDIT_CLIENT_SECRET": "your_secret",
        "OPENROUTER_API_KEY": "your_key",
        "OPENROUTER_BASE_URL": "https://openrouter.ai/api/v1",
        "RESEARCH_MODEL": "x-ai/grok-4.1-fast"
      }
    }
  }
}

Cursor/Windsurf

Add to .cursor/mcp.json or equivalent:

{
  "mcpServers": {
    "research-powerpack": {
      "command": "npx",
      "args": ["mcp-researchpowerpack"],
      "env": {
        "SERPER_API_KEY": "your_key"
      }
    }
  }
}

Zero Crash Promise: Missing API keys? No problem. The server always starts. Tools that require missing keys return helpful setup instructions instead of crashing.


🌐 Transport Modes

Research Powerpack supports three transport modes:

Mode Use Case How to Start
STDIO (default) Claude Desktop, Cursor, Windsurf npx mcp-researchpowerpack
HTTP Streamable Self-hosted, Docker, LAN sharing MCP_TRANSPORT=http npx mcp-researchpowerpack
Cloudflare Workers Serverless, globally distributed Already deployed ↓

Remote MCP (Cloudflare Workers)

A remote MCP endpoint is deployed and ready to use:

https://mcp-researchpowerpack.seodoold.workers.dev/mcp

Connect from any MCP client that supports HTTP Streamable transport:

{
  "mcpServers": {
    "research-powerpack-remote": {
      "type": "streamable-http",
      "url": "https://mcp-researchpowerpack.seodoold.workers.dev/mcp"
    }
  }
}

Self-Hosted HTTP Streamable

# Start on default port 3001
MCP_TRANSPORT=http npx mcp-researchpowerpack

# Custom port
MCP_TRANSPORT=http MCP_PORT=8080 npx mcp-researchpowerpack
{
  "mcpServers": {
    "research-powerpack-http": {
      "type": "streamable-http",
      "url": "http://localhost:3001/mcp"
    }
  }
}

🎮 Tool Reference

<div align="center"> <table> <tr> <td align="center"> <h3>🔍</h3> <b><code>web_search</code></b><br/> <sub>Batch Google search</sub> </td> <td align="center"> <h3>💬</h3> <b><code>search_reddit</code></b><br/> <sub>Find Reddit discussions</sub> </td> <td align="center"> <h3>📖</h3> <b><code>get_reddit_post</code></b><br/> <sub>Fetch posts + comments</sub> </td> <td align="center"> <h3>🌐</h3> <b><code>scrape_links</code></b><br/> <sub>Extract any URL</sub> </td> <td align="center"> <h3>🧠</h3> <b><code>deep_research</code></b><br/> <sub>AI synthesis</sub> </td> </tr> </table> </div>

web_search

Batch web search using Google via Serper API. Search up to 100 keywords in parallel.

Parameter Type Required Description
keywords string[] Yes Search queries (1-100). Use distinct keywords for maximum coverage.

Supports Google operators: site:, -exclusion, "exact phrase", filetype:

{
  "keywords": [
    "best IDE 2025",
    "VS Code alternatives",
    "Cursor vs Windsurf comparison"
  ]
}

search_reddit

Search Reddit via Google with automatic site:reddit.com filtering.

Parameter Type Required Description
queries string[] Yes Search queries (max 10)
date_after string No Filter results after date (YYYY-MM-DD)

Search operators: intitle:keyword, "exact phrase", OR, -exclude

{
  "queries": [
    "best mechanical keyboard 2025",
    "intitle:keyboard recommendation"
  ],
  "date_after": "2024-01-01"
}

get_reddit_post

Fetch Reddit posts with smart comment allocation (1,000 comment budget distributed automatically).

Parameter Type Required Default Description
urls string[] Yes Reddit post URLs (2-50)
fetch_comments boolean No true Whether to fetch comments
max_comments number No auto Override comment allocation

Smart Allocation:

  • 2 posts → ~500 comments/post (deep dive)
  • 10 posts → ~100 comments/post
  • 50 posts → ~20 comments/post (quick scan)
{
  "urls": [
    "https://reddit.com/r/programming/comments/abc123/post_title",
    "https://reddit.com/r/webdev/comments/def456/another_post"
  ]
}

scrape_links

Universal URL content extraction with automatic fallback modes.

Parameter Type Required Default Description
urls string[] Yes URLs to scrape (3-50)
timeout number No 30 Timeout per URL (seconds)
use_llm boolean No false Enable AI extraction
what_to_extract string No Extraction instructions for AI

Automatic Fallback: Basic → JS rendering → JS + US geo-targeting

{
  "urls": ["https://example.com/article1", "https://example.com/article2"],
  "use_llm": true,
  "what_to_extract": "Extract the main arguments and key statistics"
}

deep_research

AI-powered batch research with web search and citations.

Parameter Type Required Description
questions object[] Yes Research questions (2-10)
questions[].question string Yes The research question
questions[].file_attachments object[] No Files to include as context

Token Allocation: 32,000 tokens distributed across questions:

  • 2 questions → 16,000 tokens/question (deep dive)
  • 10 questions → 3,200 tokens/question (rapid multi-topic)
{
  "questions": [
    { "question": "What are the current best practices for React Server Components in 2025?" },
    { "question": "Compare Bun vs Node.js for production workloads with benchmarks." }
  ]
}

⚙️ Environment Variables & Tool Availability

Research Powerpack uses a modular architecture. Tools are automatically enabled based on which API keys you provide:

<div align="center">

ENV Variable Tools Enabled Free Tier
SERPER_API_KEY web_search, search_reddit 2,500 queries/mo
REDDIT_CLIENT_ID + SECRET get_reddit_post Unlimited
SCRAPEDO_API_KEY scrape_links 1,000 credits/mo
OPENROUTER_API_KEY deep_research + AI in scrape_links Pay-as-you-go
RESEARCH_MODEL Model for deep_research Default: perplexity/sonar-deep-research
LLM_EXTRACTION_MODEL Model for AI extraction in scrape_links Default: openrouter/gpt-oss-120b:nitro

</div>

Configuration Examples

# Search-only mode (just web_search and search_reddit)
SERPER_API_KEY=xxx

# Reddit research mode (search + fetch posts)
SERPER_API_KEY=xxx
REDDIT_CLIENT_ID=xxx
REDDIT_CLIENT_SECRET=xxx

# Full research mode (all 5 tools)
SERPER_API_KEY=xxx
REDDIT_CLIENT_ID=xxx
REDDIT_CLIENT_SECRET=xxx
SCRAPEDO_API_KEY=xxx
OPENROUTER_API_KEY=xxx

Full Power Mode

For the best research experience, configure all four API keys:

SERPER_API_KEY=your_serper_key       # Free: 2,500 queries/month
REDDIT_CLIENT_ID=your_reddit_id       # Free: Unlimited
REDDIT_CLIENT_SECRET=your_reddit_secret
SCRAPEDO_API_KEY=your_scrapedo_key   # Free: 1,000 credits/month
OPENROUTER_API_KEY=your_openrouter_key # Pay-as-you-go

This unlocks:

  • 5 research tools working together
  • AI-powered content extraction in scrape_links
  • Deep research with web search and citations
  • Complete Reddit mining (search → fetch → analyze)

Total setup time: ~10 minutes. Total free tier value: ~$50/month equivalent.

🔑 API Key Setup Guides

<details> <summary><b>🔍 Serper API (Google Search) — FREE: 2,500 queries/month</b></summary>

What you get

  • Fast Google search results via API
  • Enables web_search and search_reddit tools

Setup Steps

  1. Go to serper.dev
  2. Click "Get API Key" (top right)
  3. Sign up with email or Google
  4. Copy your API key from the dashboard
  5. Add to your config:
    SERPER_API_KEY=your_key_here
    

Pricing

  • Free: 2,500 queries/month
  • Paid: $50/month for 50,000 queries

</details>

<details> <summary><b>🤖 Reddit OAuth — FREE: Unlimited access</b></summary>

What you get

  • Full Reddit API access
  • Fetch posts and comments with upvote sorting
  • Enables get_reddit_post tool

Setup Steps

  1. Go to reddit.com/prefs/apps
  2. Scroll down and click "create another app..."
  3. Fill in:
    • Name: research-powerpack (or any name)
    • App type: Select "script" (important!)
    • Redirect URI: http://localhost:8080
  4. Click "create app"
  5. Copy your credentials:
    • Client ID: The string under your app name
    • Client Secret: The "secret" field
  6. Add to your config:
    REDDIT_CLIENT_ID=your_client_id
    REDDIT_CLIENT_SECRET=your_client_secret
    

</details>

<details> <summary><b>🌐 Scrape.do (Web Scraping) — FREE: 1,000 credits/month</b></summary>

What you get

  • JavaScript rendering support
  • Geo-targeting and CAPTCHA handling
  • Enables scrape_links tool

Setup Steps

  1. Go to scrape.do
  2. Click "Start Free"
  3. Sign up with email
  4. Copy your API key from the dashboard
  5. Add to your config:
    SCRAPEDO_API_KEY=your_key_here
    

Credit Usage

  • Basic scrape: 1 credit
  • JavaScript rendering: 5 credits
  • Geo-targeting: +25 credits

</details>

<details> <summary><b>🧠 OpenRouter (AI Models) — Pay-as-you-go</b></summary>

What you get

  • Access to 100+ AI models via one API
  • Enables deep_research tool
  • Enables AI extraction in scrape_links

Setup Steps

  1. Go to openrouter.ai
  2. Sign up with Google/GitHub/email
  3. Go to openrouter.ai/keys
  4. Click "Create Key"
  5. Copy the key (starts with sk-or-...)
  6. Add to your config:
    OPENROUTER_API_KEY=sk-or-v1-xxxxx
    

Recommended Models for Deep Research

# Default (optimized for research)
RESEARCH_MODEL=perplexity/sonar-deep-research

# Fast and capable
RESEARCH_MODEL=x-ai/grok-4.1-fast

# High quality
RESEARCH_MODEL=anthropic/claude-3.5-sonnet

# Budget-friendly
RESEARCH_MODEL=openai/gpt-4o-mini

Recommended Models for AI Extraction (use_llm in scrape_links)

# Default (fast and cost-effective for extraction)
LLM_EXTRACTION_MODEL=openrouter/gpt-oss-120b:nitro

# High quality extraction
LLM_EXTRACTION_MODEL=anthropic/claude-3.5-sonnet

# Budget-friendly
LLM_EXTRACTION_MODEL=openai/gpt-4o-mini

Note: RESEARCH_MODEL and LLM_EXTRACTION_MODEL are independent. You can use a powerful model for deep research and a faster/cheaper model for content extraction, or vice versa.

</details>


📚 Recommended Workflows

Research a Technology Decision

1. web_search → ["React vs Vue 2025", "Next.js vs Nuxt comparison"]
2. search_reddit → ["best frontend framework 2025", "Next.js production experience"]
3. get_reddit_post → [URLs from step 2]
4. scrape_links → [Documentation and blog URLs from step 1]
5. deep_research → [Synthesize findings into specific questions]

Competitive Analysis

1. web_search → ["competitor name review", "competitor vs alternatives"]
2. scrape_links → [Competitor websites, review sites]
3. search_reddit → ["competitor name experience", "switching from competitor"]
4. get_reddit_post → [URLs from step 3]

Debug an Obscure Error

1. web_search → ["exact error message", "error + framework name"]
2. search_reddit → ["error message", "framework + error type"]
3. get_reddit_post → [URLs with solutions]
4. scrape_links → [Stack Overflow answers, GitHub issues]

🛠️ Development

git clone https://github.com/yigitkonur/mcp-researchpowerpack.git
cd mcp-researchpowerpack
npm install
npm run dev
npm run build
npm run typecheck

🔧 Troubleshooting

<details> <summary><b>Expand for troubleshooting tips</b></summary>

Problem Solution
Tool returns "API key not configured" Add the required ENV variable to your MCP config. The error message tells you exactly which key is missing.
Reddit posts returning empty Check your REDDIT_CLIENT_ID and REDDIT_CLIENT_SECRET. Make sure you created a "script" type app.
Scraping fails on JavaScript sites This is expected for the first attempt. The tool auto-retries with JS rendering. If still failing, the site may be blocking scrapers.
Deep research taking too long Use a faster model like x-ai/grok-4.1-fast instead of perplexity/sonar-deep-research.
Token limit errors Reduce the number of URLs/questions per request. The tool distributes a fixed token budget.

</details>


<div align="center">

MIT © Yigit Konur

</div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured