Research MCP

Research MCP

Enables LLMs to search, analyze, and summarize academic research papers in real-time from arXiv, Semantic Scholar, and PubMed. Provides automatic deduplication, citation analysis, and BibTeX generation across multiple research databases.

Category
Visit Server

README

🧠 Research MCP - Model Context Protocol Research Assistant

npm version GitHub License: MIT

A complete Model Context Protocol (MCP)-based Research Assistant that enables LLMs to fetch, analyze, and summarize academic research papers in real-time from multiple trusted sources: arXiv, Semantic Scholar, and PubMed.

🔍 Overview

The Research MCP system provides standardized access to academic research databases through three specialized MCP servers. Each server implements the MCP specification, allowing AI assistants to query live research data, process results, and return structured insights like summaries, comparisons, and citations.

✨ Features

  • 📚 Multi-Source Search: Query arXiv, Semantic Scholar, and PubMed simultaneously
  • 🔄 Automatic Deduplication: Smart paper matching across different sources
  • 📊 Citation Analysis: Track citation counts and influential papers
  • 📝 BibTeX Generation: Automatic citation formatting for all sources
  • Rate Limiting: Built-in request throttling to respect API limits
  • 🎯 Advanced Filtering: Filter by year, author, venue, and more
  • 🔍 Full Metadata: Complete paper information including abstracts, authors, and links

🏗️ Architecture

┌─────────────────────────────────────────────────────────────┐
│                      LLM Client                             │
│  (Issues natural language queries)                          │
└────────────────┬────────────────────────────────────────────┘
                 │
                 │ MCP Protocol
                 │
┌────────────────┴───────────────────────────────────────────┐
│                   MCP Servers                              │
│  ┌──────────┐   ┌──────────────┐  ┌──────────┐             │
│  │  arXiv   │   │   Semantic   │  │  PubMed  │             │
│  │  Server  │   │    Scholar   │  │  Server  │             │
│  └────┬─────┘   └──────┬───────┘  └────┬─────┘             │
└───────┼────────────────┼───────────────┼───────────────────┘
        │                │               │
        │                │               │
┌───────┴────────────────┴───────────────┴───────────────────┐
│              External APIs                                 │
│    arXiv API    Semantic Scholar API    PubMed E-utils     │
└────────────────────────────────────────────────────────────┘

📋 Prerequisites

  • Node.js 18+
  • An MCP-compatible client (Claude Desktop, Cline, etc.)

🚀 Installation

Quick Start with npx (Recommended)

No installation or API keys needed! Just add to your MCP client configuration:

{
  "mcpServers": {
    "research-arxiv": {
      "command": "npx",
      "args": ["-y", "researchmcp", "arxiv"]
    },
    "research-semantic-scholar": {
      "command": "npx",
      "args": ["-y", "researchmcp", "semantic"]
    },
    "research-pubmed": {
      "command": "npx",
      "args": ["-y", "researchmcp", "pubmed"]
    }
  }
}

That's it! All three servers work perfectly without any API keys or configuration.


Local Development

For contributing or modifying the code:

git clone https://github.com/gyash1512/ResearchMCP.git
cd ResearchMCP
npm install
npm run build

🎮 Usage

Using with npx (Recommended)

Just configure in your MCP client - that's it! No API keys needed.

Local Development

Start servers individually for testing:

npm run start:arxiv
npm run start:semantic
npm run start:pubmed

MCP Configuration

Simple setup - no API keys required:

{
  "mcpServers": {
    "research-arxiv": {
      "command": "npx",
      "args": ["-y", "researchmcp", "arxiv"]
    },
    "research-semantic-scholar": {
      "command": "npx",
      "args": ["-y", "researchmcp", "semantic"]
    },
    "research-pubmed": {
      "command": "npx",
      "args": ["-y", "researchmcp", "pubmed"]
    }
  }
}

<details> <summary><b>Optional:</b> Add API keys for higher rate limits (only if needed)</summary>

{
  "mcpServers": {
    "research-semantic-scholar": {
      "command": "npx",
      "args": ["-y", "researchmcp", "semantic"],
      "env": {
        "SEMANTIC_SCHOLAR_API_KEY": "your_key_here"
      }
    },
    "research-pubmed": {
      "command": "npx",
      "args": ["-y", "researchmcp", "pubmed"],
      "env": {
        "PUBMED_API_KEY": "your_key_here",
        "PUBMED_EMAIL": "your_email@example.com"
      }
    }
  }
}

</details>

<details> <summary>For local development</summary>

{
  "mcpServers": {
    "research-arxiv": {
      "command": "node",
      "args": ["./dist/servers/arxiv-server.js"],
      "cwd": "/absolute/path/to/ResearchMCP"
    },
    "research-semantic-scholar": {
      "command": "node",
      "args": ["./dist/servers/semantic-scholar-server.js"],
      "cwd": "/absolute/path/to/ResearchMCP"
    },
    "research-pubmed": {
      "command": "node",
      "args": ["./dist/servers/pubmed-server.js"],
      "cwd": "/absolute/path/to/ResearchMCP"
    }
  }
}

Note: Replace /absolute/path/to/ResearchMCP with your actual project path.

</details>

📚 Available Tools

arXiv Server

search_arxiv

Search for papers on arXiv by keyword, author, or subject.

Parameters:

  • query (string, required): Search query
  • maxResults (number, optional): Max results (default: 10, max: 100)
  • startYear (number, optional): Filter by start year
  • endYear (number, optional): Filter by end year
  • author (string, optional): Filter by author name
  • sortBy (string, optional): Sort by relevance, lastUpdatedDate, or submittedDate

Example:

{
  "query": "quantum computing",
  "maxResults": 5,
  "startYear": 2023,
  "sortBy": "relevance"
}

get_arxiv_paper

Get detailed information about a specific arXiv paper by ID.

Parameters:

  • arxivId (string, required): arXiv paper ID (e.g., "2301.12345")

arxiv_to_bibtex

Convert arXiv paper to BibTeX format.

Parameters:

  • arxivId (string, required): arXiv paper ID

Semantic Scholar Server

search_semantic_scholar

Search for papers with citation information.

Parameters:

  • query (string, required): Search query
  • maxResults (number, optional): Max results (default: 10, max: 100)
  • startYear (number, optional): Filter by start year
  • endYear (number, optional): Filter by end year

Example:

{
  "query": "transformer architecture",
  "maxResults": 10,
  "startYear": 2023
}

get_semantic_scholar_paper

Get paper by Semantic Scholar ID or DOI.

Parameters:

  • identifier (string, required): Paper ID or DOI

get_paper_citations

Get papers that cite a specific paper.

Parameters:

  • paperId (string, required): Semantic Scholar paper ID
  • maxResults (number, optional): Max citing papers (default: 10, max: 100)

semantic_scholar_to_bibtex

Convert paper to BibTeX format.

Parameters:

  • identifier (string, required): Paper ID or DOI

PubMed Server

search_pubmed

Search biomedical and life sciences papers.

Parameters:

  • query (string, required): Search query (supports MeSH terms)
  • maxResults (number, optional): Max results (default: 10, max: 100)
  • startYear (number, optional): Filter by start year
  • endYear (number, optional): Filter by end year

Example:

{
  "query": "cancer treatment",
  "maxResults": 5,
  "startYear": 2022
}

get_pubmed_paper

Get paper by PMID.

Parameters:

  • pmid (string, required): PubMed ID

pubmed_to_bibtex

Convert paper to BibTeX format.

Parameters:

  • pmid (string, required): PubMed ID

💡 Example Queries

Example 1: Multi-Source Research Query

Query: "Find recent papers on federated learning in healthcare"

Workflow:

  1. Search arXiv: search_arxiv with query "federated learning healthcare", startYear: 2023
  2. Search Semantic Scholar: search_semantic_scholar with same parameters
  3. Search PubMed: search_pubmed with same parameters
  4. Combine and deduplicate results
  5. Sort by citation count and relevance
  6. Generate summary with top 5 papers

Expected Output:

  • Comprehensive list of papers from all sources
  • Deduplicated results
  • Citation counts where available
  • Links to full papers
  • BibTeX citations

Example 2: Most Cited Paper

Query: "What's the most cited 2023 paper on quantum machine learning?"

Workflow:

  1. Call search_semantic_scholar:
    {
      "query": "quantum machine learning",
      "maxResults": 50,
      "startYear": 2023,
      "endYear": 2023
    }
    
  2. Sort results by citationCount
  3. Get detailed info with get_semantic_scholar_paper
  4. Generate BibTeX with semantic_scholar_to_bibtex

Expected Output:

  • Paper title and authors
  • Citation count and venue
  • Abstract and key findings
  • BibTeX citation
  • Link to paper

Example 3: Research Trend Analysis

Query: "Summarize transformer innovations after 2023"

Workflow:

  1. Search multiple sources for "transformer architecture" papers after 2023
  2. Extract key information from abstracts
  3. Identify common themes and methods
  4. Generate trend analysis
  5. Provide top papers with citations

Expected Output:

  • Overview of key innovations
  • Timeline of developments
  • Most influential papers
  • Citation network analysis
  • Recommended reading list

Example 4: Citation Network

Query: "Find papers citing 'Attention is All You Need'"

Workflow:

  1. Find original paper: search_semantic_scholar with title
  2. Get paper ID from results
  3. Call get_paper_citations with the paper ID
  4. Filter by year/relevance
  5. Generate summary of citing papers

Expected Output:

  • List of papers that cite the original work
  • Citation contexts
  • Related research directions
  • Impact analysis

🔧 API Response Schemas

arXiv Paper Object

{
  id: string;              // arXiv ID (e.g., "2301.12345")
  title: string;
  authors: string[];
  abstract: string;
  published: string;       // ISO date
  updated: string;         // ISO date
  url: string;            // Paper URL
  pdfUrl: string;         // PDF download URL
  categories: string[];   // Subject categories
  primaryCategory: string;
}

Semantic Scholar Paper Object

{
  paperId: string;
  title: string;
  abstract: string | null;
  year: number | null;
  authors: Array<{
    authorId: string;
    name: string;
  }>;
  citationCount: number;
  referenceCount: number;
  influentialCitationCount: number;
  url: string;
  venue: string | null;
  publicationDate: string | null;
}

PubMed Paper Object

{
  pmid: string;            // PubMed ID
  title: string;
  abstract: string;
  authors: string[];
  journal: string;
  year: string;
  doi: string | null;
  url: string;
  publicationTypes: string[];
  meshTerms: string[];    // Medical Subject Headings
}

🛡️ Rate Limiting

All servers work great without API keys:

Server Default Rate With API Key Do You Need Keys?
arXiv 3 req/sec N/A ❌ No - works perfectly!
Semantic Scholar 1-3 req/sec 10 req/sec ❌ No - unless making 100+ queries/min
PubMed 3 req/sec 10 req/sec ❌ No - unless making 100+ queries/min

Recommendation: Start without any API keys. Only add them if you hit rate limits.

🔒 Security Notes

  • No API keys needed - all servers work out of the box
  • If using API keys, pass via MCP config env section (see optional config above)
  • Never commit API keys to version control
  • Respect API rate limits and terms of service

📖 MCP Specification Compliance

This implementation follows the Model Context Protocol specification:

  • ✅ Standard tool definition schema
  • ✅ JSON-based request/response format
  • ✅ Error handling with proper status codes
  • ✅ Resource management and cleanup
  • ✅ Stdio transport for client communication

🤝 Contributing

Contributions are welcome! Areas for improvement:

  • Additional research sources (IEEE, ACM, etc.)
  • Advanced filtering and ranking algorithms
  • Paper recommendation system
  • Citation graph visualization
  • Full-text analysis capabilities

📄 License

MIT License - See LICENSE file for details

🙏 Acknowledgments

  • arXiv for open access to research papers
  • Semantic Scholar for citation data and API
  • PubMed/NCBI for biomedical research database
  • Model Context Protocol team for the MCP specification

📞 Support

For issues, questions, or contributions:

  • Open an issue on GitHub
  • Check API documentation for each service
  • Review MCP specification for protocol details

Built with ❤️ using TypeScript and the Model Context Protocol

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured