Red Team MCP

Red Team MCP

A multi-agent collaboration platform that provides access to over 1,500 models from 68 providers via the Model Context Protocol. It enables users to assemble and coordinate specialized AI teams using advanced orchestration modes like swarm, debate, and hierarchical workflows.

Category
Visit Server

README

<p align="center"> <img src="src/web/static/logo.svg" alt="Red Team MCP" width="120" height="120"> </p>

<h1 align="center">Red Team MCP</h1>

<p align="center"> <strong>Assemble elite AI agent teams to tackle any challenge</strong> </p>

<p align="center"> <a href="#-quick-start">Quick Start</a> • <a href="#-features">Features</a> • <a href="#-multi-agent-coordination">Multi-Agent</a> • <a href="#-mcp-integration">MCP Integration</a> • <a href="#-api-reference">API</a> </p>

<p align="center"> <img src="https://img.shields.io/badge/providers-68-red" alt="68 Providers"> <img src="https://img.shields.io/badge/models-1500+-red" alt="1500+ Models"> <img src="https://img.shields.io/badge/python-3.10+-blue" alt="Python 3.10+"> <img src="https://img.shields.io/badge/license-AGPL--3.0-blue" alt="AGPL-3.0 License"> </p>


Red Team MCP is a multi-agent collaboration platform that connects to 68 providers and 1500+ models via models.dev. Build specialized agent teams, coordinate complex workflows, and integrate seamlessly with VS Code and Claude Desktop through the Model Context Protocol (MCP).

✨ Features

<table> <tr> <td width="50%">

🎯 Universal Model Access

  • 68 Providers: Anthropic, OpenAI, Google, Groq, Mistral, DeepSeek, and 60+ more
  • 1500+ Models: Auto-synced from models.dev
  • Unified API: One interface for all providers

</td> <td width="50%">

🤖 Multi-Agent Collaboration

  • 5 Coordination Modes: Pipeline, Ensemble, Debate, Swarm, Hierarchical
  • Predefined Teams: Writing, Marketing, Research, Technical, Executive
  • Custom Teams: Build your own agent configurations

</td> </tr> <tr> <td width="50%">

📡 MCP Integration

  • VS Code Ready: Works with GitHub Copilot
  • Claude Desktop: Native integration
  • Dynamic Tools: All agents exposed as MCP tools

</td> <td width="50%">

🚀 Production Ready

  • FastAPI Backend: High-performance async API
  • Web Dashboard: HTMX-powered admin interface
  • Cost Tracking: Per-request usage analytics

</td> </tr> </table>

🚀 Quick Start

Option A: Docker (Recommended)

git clone https://github.com/yourusername/red-team-mcp.git
cd red-team-mcp
cp .env.example .env
# Edit .env with your API keys

docker compose up -d
# Open http://localhost:8000/ui/

Option B: Local Install

git clone https://github.com/yourusername/red-team-mcp.git
cd red-team-mcp
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install -r requirements.txt

Configure API Keys

cp .env.example .env
# Edit .env with your API keys

Run

# Start the web server & dashboard
python main.py serve
# Open http://localhost:8000/ui/

# Or use the CLI
python main.py chat "What is machine learning?"

# Or start the MCP server
python main.py mcp

🤝 Multi-Agent Coordination

Red Team MCP excels at coordinating multiple AI agents on complex tasks. Choose from 5 coordination modes:

Mode Description Best For
Pipeline Agents work sequentially, each building on the previous output Document workflows, iterative refinement
Ensemble Agents work in parallel, then synthesize results Comprehensive analysis, multiple perspectives
Debate Agents engage in back-and-forth argumentation Critical thinking, finding flaws
Swarm CrewAI-powered collaboration with delegation Complex projects, dynamic task allocation
Hierarchical Manager agent delegates to specialists Large teams, structured workflows

Predefined Agent Teams

Team Agents Default Mode
Writing Team Creative Writer, Editor, SEO Specialist Pipeline
Marketing Team Strategist, Brand Manager, Social Media Hierarchical
Research Team Researcher, Data Scientist, Analyst Ensemble
Technical Team Expert, Solutions Architect, Security Debate
Executive Team Strategy, Financial, Operations Ensemble

Example: Multi-Agent Request

curl -X POST "http://localhost:8000/api/multi-agent" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "Analyze the competitive landscape for AI startups",
    "coordination_mode": "ensemble",
    "agents": ["financial_analyst", "strategy_consultant", "technical_expert"]
  }'

📡 MCP Integration

Red Team MCP provides a Model Context Protocol server for seamless integration with AI assistants.

VS Code Setup

Create .vscode/mcp.json in your project:

{
  "servers": {
    "red-team-mcp": {
      "command": "python",
      "args": ["-m", "src.mcp_server_dynamic"],
      "cwd": "/path/to/red-team-mcp"
    }
  }
}

Claude Desktop Setup

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "red-team-mcp": {
      "command": "python",
      "args": ["/path/to/red-team-mcp/main.py", "mcp"]
    }
  }
}

Available MCP Tools

Tool Description
list_agents List all available agents
list_teams List all predefined teams
chat Chat with a specific agent
run_team Execute a team on a task
coordinate Run multi-agent coordination
brainstorm Generate multiple perspectives

📖 API Reference

Chat Endpoint

POST /api/chat
Content-Type: application/json

{
  "agent_id": "creative_writer",
  "message": "Write a tagline for an AI product",
  "temperature": 0.8,
  "max_tokens": 500
}

Multi-Agent Endpoint

POST /api/multi-agent
Content-Type: application/json

{
  "query": "Develop a go-to-market strategy",
  "coordination_mode": "hierarchical",
  "agents": ["marketing_strategist", "sales_analyst"],
  "rebuttal_limit": 3
}

Run Team Endpoint

POST /api/team/{team_id}/run
Content-Type: application/json

{
  "query": "Create a blog post about AI trends",
  "coordination_mode": "pipeline"
}

Additional Endpoints

Endpoint Method Description
/api/agents GET List all agents
/api/teams GET List all teams
/api/models GET List available models
/health GET Health check
/ws/chat WS WebSocket streaming

🏗️ Architecture

red-team-mcp/
├── main.py                    # CLI entry point
├── config/config.yaml         # Configuration
├── src/
│   ├── api/                   # FastAPI application
│   │   ├── app.py            # App factory
│   │   ├── endpoints.py      # REST endpoints
│   │   └── websockets.py     # WebSocket handlers
│   ├── agents/               # Agent implementations
│   │   ├── configurable_agent.py
│   │   └── coordinator.py    # Multi-agent coordination
│   ├── web/                  # Dashboard UI
│   │   ├── routes.py
│   │   └── templates/        # HTMX templates
│   ├── providers/            # 68 provider implementations
│   ├── config.py             # Configuration management
│   ├── models.py             # Model selector
│   ├── db.py                 # SQLite persistence
│   └── mcp_server_dynamic.py # MCP server
└── mcp_servers/              # Generated MCP servers

⚙️ Configuration

Environment Variables

# Core providers
ANTHROPIC_API_KEY=your_key
OPENAI_API_KEY=your_key
GOOGLE_API_KEY=your_key
GROQ_API_KEY=your_key
DEEPSEEK_API_KEY=your_key

# And 60+ more providers supported!

config.yaml

api:
  host: "0.0.0.0"
  port: 8000
  rate_limit: "100/minute"

models:
  default: "claude-sonnet-4-20250514"

agents:
  predefined:
    - id: my_custom_agent
      name: Custom Agent
      model_id: gpt-4o
      provider: openai
      role: Specialist
      goal: Help with specific tasks

🧪 Development

# Run tests
python -m pytest tests/ -v

# Run with hot reload
python main.py serve --reload

# Generate MCP servers
python main.py generate-mcp --all

📊 Web Dashboard

Access the admin dashboard at http://localhost:8000/ui/ to:

  • 💬 Chat with any agent interactively
  • 👥 Manage Teams and agent configurations
  • 📈 View Statistics on usage and costs
  • ⚙️ Configure providers and settings
  • 📤 Export configurations

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing)
  3. Add tests for new functionality
  4. Ensure all tests pass (python -m pytest)
  5. Submit a pull request

📄 License

AGPL-3.0 License - see LICENSE for details.

🙏 Acknowledgments

  • models.dev - Comprehensive model database
  • CrewAI - Agent orchestration framework
  • FastAPI - High-performance web framework
  • All 68 AI providers making their models accessible

<p align="center"> <strong>Ready to assemble your AI team?</strong><br> <a href="#-quick-start">Get Started →</a> </p>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured