Recursive Companion MCP
An MCP server that implements iterative refinement of responses through self-critique cycles, breaking the process into discrete steps to avoid timeouts and show progress.
README
Recursive Companion MCP
An MCP (Model Context Protocol) server that implements iterative refinement through self-critique cycles. Inspired by Hank Besser's recursive-companion, this implementation adds incremental processing to avoid timeouts and enable progress visibility.
Features
- Incremental Refinement: Avoids timeouts by breaking refinement into discrete steps
- Mathematical Convergence: Uses cosine similarity to measure when refinement is complete
- Domain-Specific Optimization: Auto-detects and optimizes for technical, marketing, strategy, legal, and financial domains
- Progress Visibility: Each step returns immediately, allowing UI updates
- Parallel Sessions: Support for multiple concurrent refinement sessions
How It Works
The refinement process follows a Draft → Critique → Revise → Converge pattern:
- Draft: Generate initial response
- Critique: Create multiple parallel critiques (using faster models)
- Revise: Synthesize critiques into improved version
- Converge: Measure similarity and repeat until threshold reached
Installation
Prerequisites
- Python 3.10+
- uv package manager
- AWS Account with Bedrock access
- Claude Desktop app
Setup
- Clone the repository:
git clone https://github.com/yourusername/recursive-companion-mcp.git
cd recursive-companion-mcp
- Install dependencies:
uv sync
-
Configure AWS credentials as environment variables or through AWS CLI
-
Add to Claude Desktop config (
~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"recursive-companion": {
"command": "/path/to/recursive-companion-mcp/run_server.sh",
"env": {
"AWS_REGION": "us-east-1",
"AWS_ACCESS_KEY_ID": "your-key",
"AWS_SECRET_ACCESS_KEY": "your-secret",
"BEDROCK_MODEL_ID": "anthropic.claude-3-sonnet-20240229-v1:0",
"CRITIQUE_MODEL_ID": "anthropic.claude-3-haiku-20240307-v1:0",
"CONVERGENCE_THRESHOLD": "0.95",
"PARALLEL_CRITIQUES": "2",
"MAX_ITERATIONS": "5",
"REQUEST_TIMEOUT": "600"
}
}
}
}
Usage
The tool provides several MCP endpoints:
Start a refinement session
Use start_refinement to refine: "Explain the key principles of secure API design"
Continue refinement step by step
Use continue_refinement with session_id "abc123..."
Get final result
Use get_final_result with session_id "abc123..."
Other tools
get_refinement_status- Check progress without advancinglist_refinement_sessions- See all active sessions
Configuration
| Environment Variable | Default | Description |
|---|---|---|
BEDROCK_MODEL_ID |
anthropic.claude-3-sonnet-20240229-v1:0 | Main generation model |
CRITIQUE_MODEL_ID |
Same as BEDROCK_MODEL_ID | Model for critiques (use Haiku for speed) |
CONVERGENCE_THRESHOLD |
0.98 | Similarity threshold for convergence (0.90-0.99) |
PARALLEL_CRITIQUES |
3 | Number of parallel critiques per iteration |
MAX_ITERATIONS |
10 | Maximum refinement iterations |
REQUEST_TIMEOUT |
300 | Timeout in seconds |
Performance
With optimized settings:
- Each iteration: 60-90 seconds
- Typical convergence: 2-3 iterations
- Total time: 2-4 minutes (distributed across multiple calls)
Using Haiku for critiques reduces iteration time by ~50%.
Architecture
┌─────────────┐ ┌──────────────┐ ┌─────────────┐
│ Claude │────▶│ MCP Server │────▶│ Bedrock │
│ Desktop │◀────│ │◀────│ Claude │
└─────────────┘ └──────────────┘ └─────────────┘
│
▼
┌──────────────┐
│ Session │
│ Manager │
└──────────────┘
Development
Running tests
uv run pytest tests/
Local testing
uv run python test_incremental.py
Attribution
This project is inspired by recursive-companion by Hank Besser. The original implementation provided the conceptual Draft → Critique → Revise → Converge pattern. This MCP version adds:
- Session-based incremental processing to avoid timeouts
- AWS Bedrock integration for Claude and Titan embeddings
- Domain auto-detection and specialized prompts
- Mathematical convergence measurement
- Support for different models for critiques vs generation
Contributing
Contributions are welcome! Please read our Contributing Guide for details.
License
MIT License - see LICENSE file for details.
Acknowledgments
- Original concept: Hank Besser's recursive-companion
- Built for the Model Context Protocol
- Uses AWS Bedrock for LLM access
- Inspired by iterative refinement patterns in AI reasoning
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.