Record MCP Server
Enables storing and managing dynamic review records with custom schemas for any category (coffee, whisky, wine, etc.), supporting both local filesystem and Cloudflare R2 storage with flexible field definitions.
README
Record MCP Server
A Model Context Protocol (MCP) server for storing and managing dynamic review records with user-defined schemas. Perfect for organizing reviews of coffee, whisky, wine, or any other category you can think of!
Features
- Dynamic Schemas: Create review types with custom fields on-the-fly
- Flexible Storage: Local filesystem (dev) or Cloudflare R2 (production)
- Type-Safe: Built with TypeScript and runtime validation
- Extensible: Add new fields to existing review types
- Easy Migration: Switch from local to cloud storage with one environment variable
Quick Start
Installation
# Install dependencies
npm install
# Build the project
npm run build
Configuration
Copy the example environment file:
cp .env.example .env
For local development (default):
STORAGE_PROVIDER=local
LOCAL_DATA_PATH=./data
For production with Cloudflare R2:
STORAGE_PROVIDER=r2
R2_ACCOUNT_ID=your_account_id
R2_ACCESS_KEY_ID=your_access_key
R2_SECRET_ACCESS_KEY=your_secret_key
R2_BUCKET_NAME=review-records
Running the Server
Development mode (with auto-reload):
npm run dev
Production mode:
npm run build
npm start
Running Tests
npm test
MCP Tools
The server provides the following MCP tools:
1. list_review_types
List all review types with their schemas and record counts.
Parameters: None
Example Response:
{
"types": [
{
"name": "coffee",
"schema": [
{ "name": "flavor", "type": "string" },
{ "name": "aroma", "type": "string" },
{ "name": "acidity", "type": "string" }
],
"recordCount": 5,
"createdAt": "2025-11-16T10:00:00Z",
"updatedAt": "2025-11-16T12:00:00Z"
}
]
}
2. get_review_type
Get detailed information about a specific review type including all records.
Parameters:
typeName(string): Name of the review type
Example:
{
"typeName": "coffee"
}
3. add_review_type
Create a new review type with a custom schema.
Parameters:
name(string): Name of the review type (e.g., "coffee", "whisky")fields(array): Array of field definitions
Supported Field Types:
string: Text valuesnumber: Numeric valuesboolean: True/false valuesdate: ISO 8601 date strings
Example:
{
"name": "coffee",
"fields": [
{ "name": "flavor", "type": "string" },
{ "name": "aroma", "type": "string" },
{ "name": "acidity", "type": "string" },
{ "name": "rating", "type": "number" }
]
}
4. add_field_to_type
Add a new field to an existing review type's schema.
Parameters:
typeName(string): Name of the review typefieldName(string): Name of the new fieldfieldType(string): Type of the field (string, number, boolean, date)
Example:
{
"typeName": "coffee",
"fieldName": "body",
"fieldType": "string"
}
5. add_review_record
Add a new review record to a type.
Parameters:
typeName(string): Name of the review typedata(object): Review data matching the type's schema
Example:
{
"typeName": "coffee",
"data": {
"flavor": "nutty",
"aroma": "strong",
"acidity": "medium",
"rating": 8.5
}
}
Usage Examples
Complete Workflow
// 1. Create a new review type
await mcp.callTool("add_review_type", {
name: "whisky",
fields: [
{ name: "taste", type: "string" },
{ name: "age", type: "number" },
{ name: "peated", type: "boolean" },
{ name: "tasted_on", type: "date" }
]
});
// 2. Add a review
await mcp.callTool("add_review_record", {
typeName: "whisky",
data: {
taste: "smoky and complex",
age: 12,
peated: true,
tasted_on: "2025-11-16T10:00:00Z"
}
});
// 3. Add more fields later
await mcp.callTool("add_field_to_type", {
typeName: "whisky",
fieldName: "region",
fieldType: "string"
});
// 4. List all types and their data
const result = await mcp.callTool("list_review_types", {});
Architecture
Project Structure
record-mcp/
├── src/
│ ├── index.ts # MCP server entry point
│ ├── types.ts # TypeScript type definitions
│ ├── storage/
│ │ ├── interface.ts # Storage provider interface
│ │ ├── local.ts # Local file system storage
│ │ ├── r2.ts # Cloudflare R2 storage
│ │ └── factory.ts # Storage provider factory
│ ├── tools/
│ │ ├── list-types.ts # List and get review types
│ │ ├── add-type.ts # Create new review type
│ │ ├── add-field.ts # Add field to type
│ │ └── add-record.ts # Add review record
│ └── utils/
│ └── validation.ts # Schema and data validation
├── data/ # Local storage (when using local provider)
│ ├── types/
│ │ ├── coffee.json
│ │ └── whisky.json
│ └── index.json
└── tests/
├── storage.test.ts # Storage provider tests
└── tools.test.ts # MCP tools tests
Storage Abstraction
The server uses a storage abstraction layer that allows easy switching between local files and Cloudflare R2:
- Local Storage (Development): Uses Node.js
fs/promisesto store JSON files - R2 Storage (Production): Uses AWS S3-compatible API to store in Cloudflare R2
Both providers implement the same StorageProvider interface, making migration seamless.
Data Format
Each review type is stored as a separate JSON file:
{
"name": "coffee",
"schema": [
{ "name": "flavor", "type": "string" },
{ "name": "aroma", "type": "string" }
],
"records": [
{
"id": "1234567890-abc123",
"data": {
"flavor": "nutty",
"aroma": "strong"
},
"createdAt": "2025-11-16T10:00:00Z"
}
],
"createdAt": "2025-11-15T09:00:00Z",
"updatedAt": "2025-11-16T10:00:00Z"
}
Migration from Local to R2
When you're ready to move to production:
- Set up your Cloudflare R2 bucket
- Update your
.envfile with R2 credentials - Change
STORAGE_PROVIDER=r2 - Restart the server
Optional: Use a migration script to copy existing data:
// Copy all local files to R2
const localStorage = new LocalStorageProvider('./data');
const r2Storage = new R2StorageProvider(r2Config);
const types = await localStorage.listTypes();
for (const typeName of types) {
const data = await localStorage.readType(typeName);
await r2Storage.writeType(typeName, data);
}
Validation
The server provides comprehensive validation:
- Type Names: Alphanumeric, hyphens, and underscores only
- Field Types: Must be one of: string, number, boolean, date
- Required Fields: All schema fields must be present in records
- Extra Fields: Records cannot have fields not in the schema
- Type Checking: Field values must match their declared types
Error Handling
All tools return structured error messages:
{
"error": "Review type \"coffee\" already exists"
}
Common errors:
- Duplicate type names
- Duplicate field names
- Missing required fields in records
- Type mismatches
- Invalid type/field names
Development
Building
npm run build
Watching for Changes
npm run watch
Testing
Run all tests:
npm test
Run specific test file:
tsx tests/storage.test.ts
tsx tests/tools.test.ts
License
MIT
Contributing
Contributions welcome! Please ensure tests pass before submitting PRs.
Support
For issues or questions, please open a GitHub issue.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.