Record MCP Server

Record MCP Server

Enables storing and managing dynamic review records with custom schemas for any category (coffee, whisky, wine, etc.), supporting both local filesystem and Cloudflare R2 storage with flexible field definitions.

Category
Visit Server

README

Record MCP Server

A Model Context Protocol (MCP) server for storing and managing dynamic review records with user-defined schemas. Perfect for organizing reviews of coffee, whisky, wine, or any other category you can think of!

Features

  • Dynamic Schemas: Create review types with custom fields on-the-fly
  • Flexible Storage: Local filesystem (dev) or Cloudflare R2 (production)
  • Type-Safe: Built with TypeScript and runtime validation
  • Extensible: Add new fields to existing review types
  • Easy Migration: Switch from local to cloud storage with one environment variable

Quick Start

Installation

# Install dependencies
npm install

# Build the project
npm run build

Configuration

Copy the example environment file:

cp .env.example .env

For local development (default):

STORAGE_PROVIDER=local
LOCAL_DATA_PATH=./data

For production with Cloudflare R2:

STORAGE_PROVIDER=r2
R2_ACCOUNT_ID=your_account_id
R2_ACCESS_KEY_ID=your_access_key
R2_SECRET_ACCESS_KEY=your_secret_key
R2_BUCKET_NAME=review-records

Running the Server

Development mode (with auto-reload):

npm run dev

Production mode:

npm run build
npm start

Running Tests

npm test

MCP Tools

The server provides the following MCP tools:

1. list_review_types

List all review types with their schemas and record counts.

Parameters: None

Example Response:

{
  "types": [
    {
      "name": "coffee",
      "schema": [
        { "name": "flavor", "type": "string" },
        { "name": "aroma", "type": "string" },
        { "name": "acidity", "type": "string" }
      ],
      "recordCount": 5,
      "createdAt": "2025-11-16T10:00:00Z",
      "updatedAt": "2025-11-16T12:00:00Z"
    }
  ]
}

2. get_review_type

Get detailed information about a specific review type including all records.

Parameters:

  • typeName (string): Name of the review type

Example:

{
  "typeName": "coffee"
}

3. add_review_type

Create a new review type with a custom schema.

Parameters:

  • name (string): Name of the review type (e.g., "coffee", "whisky")
  • fields (array): Array of field definitions

Supported Field Types:

  • string: Text values
  • number: Numeric values
  • boolean: True/false values
  • date: ISO 8601 date strings

Example:

{
  "name": "coffee",
  "fields": [
    { "name": "flavor", "type": "string" },
    { "name": "aroma", "type": "string" },
    { "name": "acidity", "type": "string" },
    { "name": "rating", "type": "number" }
  ]
}

4. add_field_to_type

Add a new field to an existing review type's schema.

Parameters:

  • typeName (string): Name of the review type
  • fieldName (string): Name of the new field
  • fieldType (string): Type of the field (string, number, boolean, date)

Example:

{
  "typeName": "coffee",
  "fieldName": "body",
  "fieldType": "string"
}

5. add_review_record

Add a new review record to a type.

Parameters:

  • typeName (string): Name of the review type
  • data (object): Review data matching the type's schema

Example:

{
  "typeName": "coffee",
  "data": {
    "flavor": "nutty",
    "aroma": "strong",
    "acidity": "medium",
    "rating": 8.5
  }
}

Usage Examples

Complete Workflow

// 1. Create a new review type
await mcp.callTool("add_review_type", {
  name: "whisky",
  fields: [
    { name: "taste", type: "string" },
    { name: "age", type: "number" },
    { name: "peated", type: "boolean" },
    { name: "tasted_on", type: "date" }
  ]
});

// 2. Add a review
await mcp.callTool("add_review_record", {
  typeName: "whisky",
  data: {
    taste: "smoky and complex",
    age: 12,
    peated: true,
    tasted_on: "2025-11-16T10:00:00Z"
  }
});

// 3. Add more fields later
await mcp.callTool("add_field_to_type", {
  typeName: "whisky",
  fieldName: "region",
  fieldType: "string"
});

// 4. List all types and their data
const result = await mcp.callTool("list_review_types", {});

Architecture

Project Structure

record-mcp/
├── src/
│   ├── index.ts              # MCP server entry point
│   ├── types.ts              # TypeScript type definitions
│   ├── storage/
│   │   ├── interface.ts      # Storage provider interface
│   │   ├── local.ts          # Local file system storage
│   │   ├── r2.ts             # Cloudflare R2 storage
│   │   └── factory.ts        # Storage provider factory
│   ├── tools/
│   │   ├── list-types.ts     # List and get review types
│   │   ├── add-type.ts       # Create new review type
│   │   ├── add-field.ts      # Add field to type
│   │   └── add-record.ts     # Add review record
│   └── utils/
│       └── validation.ts     # Schema and data validation
├── data/                     # Local storage (when using local provider)
│   ├── types/
│   │   ├── coffee.json
│   │   └── whisky.json
│   └── index.json
└── tests/
    ├── storage.test.ts       # Storage provider tests
    └── tools.test.ts         # MCP tools tests

Storage Abstraction

The server uses a storage abstraction layer that allows easy switching between local files and Cloudflare R2:

  • Local Storage (Development): Uses Node.js fs/promises to store JSON files
  • R2 Storage (Production): Uses AWS S3-compatible API to store in Cloudflare R2

Both providers implement the same StorageProvider interface, making migration seamless.

Data Format

Each review type is stored as a separate JSON file:

{
  "name": "coffee",
  "schema": [
    { "name": "flavor", "type": "string" },
    { "name": "aroma", "type": "string" }
  ],
  "records": [
    {
      "id": "1234567890-abc123",
      "data": {
        "flavor": "nutty",
        "aroma": "strong"
      },
      "createdAt": "2025-11-16T10:00:00Z"
    }
  ],
  "createdAt": "2025-11-15T09:00:00Z",
  "updatedAt": "2025-11-16T10:00:00Z"
}

Migration from Local to R2

When you're ready to move to production:

  1. Set up your Cloudflare R2 bucket
  2. Update your .env file with R2 credentials
  3. Change STORAGE_PROVIDER=r2
  4. Restart the server

Optional: Use a migration script to copy existing data:

// Copy all local files to R2
const localStorage = new LocalStorageProvider('./data');
const r2Storage = new R2StorageProvider(r2Config);

const types = await localStorage.listTypes();
for (const typeName of types) {
  const data = await localStorage.readType(typeName);
  await r2Storage.writeType(typeName, data);
}

Validation

The server provides comprehensive validation:

  • Type Names: Alphanumeric, hyphens, and underscores only
  • Field Types: Must be one of: string, number, boolean, date
  • Required Fields: All schema fields must be present in records
  • Extra Fields: Records cannot have fields not in the schema
  • Type Checking: Field values must match their declared types

Error Handling

All tools return structured error messages:

{
  "error": "Review type \"coffee\" already exists"
}

Common errors:

  • Duplicate type names
  • Duplicate field names
  • Missing required fields in records
  • Type mismatches
  • Invalid type/field names

Development

Building

npm run build

Watching for Changes

npm run watch

Testing

Run all tests:

npm test

Run specific test file:

tsx tests/storage.test.ts
tsx tests/tools.test.ts

License

MIT

Contributing

Contributions welcome! Please ensure tests pass before submitting PRs.

Support

For issues or questions, please open a GitHub issue.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured