Readwise MCP Server

Readwise MCP Server

A lightweight Python-based server that enables users to manage and retrieve their Readwise highlights and daily reviews through a token-efficient interface. It supports features like document importing, historical backfilling, and highlight searching with built-in deduplication and state management.

Category
Visit Server

README

Readwise MCP Server

Minimal Python MCP server for Readwise integration - token-efficient, single-file implementation using FastMCP.

Features

  • Token-efficient: 8 essential tools (vs 13+ in Node.js version)
  • Single-file architecture: ~350 lines of code
  • Proven logic: Reuses battle-tested deduplication and pagination from backfill script
  • State compatibility: Preserves existing state file format
  • Smart optimization: Uses synced ranges to skip unnecessary API calls

Installation

1. Clone repository

git clone https://github.com/ngpestelos/readwise-mcp-server.git
cd readwise-mcp-server

2. Create virtual environment

python3 -m venv venv
source venv/bin/activate

3. Install dependencies

pip install -r requirements.txt

4. Configure environment variables

Set these in your .mcp.json file:

  • READWISE_TOKEN: Your Readwise API token
  • VAULT_PATH: Path to your PARA vault (e.g., /path/to/your/vault)

Configuration

Update .mcp.json

Add or update the readwise entry in your vault's .mcp.json:

{
  "mcpServers": {
    "readwise": {
      "command": "/absolute/path/to/readwise-mcp-server/venv/bin/python",
      "args": ["/absolute/path/to/readwise-mcp-server/server.py"],
      "env": {
        "READWISE_TOKEN": "your_token_here",
        "VAULT_PATH": "/absolute/path/to/your/vault"
      }
    }
  }
}

Replace the paths with your actual installation locations.

Tools Reference

1. readwise_daily_review()

Fetch today's highlights and save to Daily Reviews directory.

Parameters: None

Returns:

{
  "status": "success",
  "count": 42,
  "file": "/path/to/daily-review.md"
}

Example:

Call readwise_daily_review()

2. readwise_import_recent(category="tweet", limit=20)

Import recent documents since last import with automatic deduplication.

Parameters:

  • category (string, optional): Document category (default: "tweet")
  • limit (int, optional): Maximum documents to fetch (default: 20)

Returns:

{
  "status": "success",
  "imported": 5,
  "skipped": 15,
  "total_analyzed": 20
}

Example:

Call readwise_import_recent(category="article", limit=50)

3. readwise_backfill(target_date, category="tweet")

Paginate backwards to target date with synced range optimization.

Parameters:

  • target_date (string, required): Target date in YYYY-MM-DD format
  • category (string, optional): Document category (default: "tweet")

Returns:

{
  "status": "success",
  "imported": 67,
  "skipped": 433,
  "pages": 10,
  "reached_target": true
}

Example:

Call readwise_backfill(target_date="2026-01-01")

4. readwise_book_highlights(title=None, book_id=None)

Get highlights for a specific book.

Parameters:

  • title (string, optional): Book title to search for
  • book_id (string, optional): Specific book ID

Returns:

{
  "status": "success",
  "count": 15,
  "highlights": [...]
}

Example:

Call readwise_book_highlights(title="Atomic Habits")

5. readwise_search_highlights(query, limit=50)

Search highlights by text query.

Parameters:

  • query (string, required): Search query
  • limit (int, optional): Maximum results (default: 50)

Returns:

{
  "status": "success",
  "count": 8,
  "highlights": [...]
}

Example:

Call readwise_search_highlights(query="productivity")

6. readwise_state_info()

Show current import state and synced ranges.

Parameters: None

Returns:

{
  "status": "success",
  "last_import": "2026-01-22T04:29:12Z",
  "oldest_imported": "2026-01-01",
  "synced_ranges": [...],
  "backfill_in_progress": false,
  "documents_on_disk": 1044,
  "documents_with_ids": 614
}

Example:

Call readwise_state_info()

7. readwise_init_ranges()

Scan filesystem to build synced_ranges from existing documents.

Parameters: None

Returns:

{
  "status": "success",
  "range": {
    "start": "2026-01-01T00:00:00Z",
    "end": "2026-01-21T00:00:00Z",
    "doc_count": 614
  },
  "documents_analyzed": 614
}

Example:

Call readwise_init_ranges()

8. readwise_reset_state(clear_ranges=False)

Clear state file (optionally preserve synced_ranges).

Parameters:

  • clear_ranges (bool, optional): Whether to clear synced ranges (default: False)

Returns:

{
  "status": "success",
  "message": "State reset",
  "cleared_ranges": false
}

Example:

Call readwise_reset_state(clear_ranges=True)

State File Format

The server maintains state at .claude/state/readwise-import.json:

{
  "last_import_timestamp": "2026-01-22T04:29:12.864733Z",
  "oldest_imported_date": "2026-01-01",
  "synced_ranges": [
    {
      "start": "2026-01-01T06:17:43.693000+00:00",
      "end": "2026-01-21T02:33:27.975000+00:00",
      "doc_count": 614,
      "verified_at": "2026-01-21T10:43:56.626549Z"
    }
  ],
  "backfill_in_progress": false
}

Testing

Run the test suite:

source venv/bin/activate
pytest test_server.py -v

Test Categories

Unit Tests:

  • State file reading/writing
  • Synced range optimization logic
  • Filename sanitization
  • ID extraction from URLs
  • Document scanning for deduplication

Integration Tests:

  • API calls with mocked responses
  • Markdown formatting
  • Document saving with collision handling

Troubleshooting

Connection Issues

  1. Check MCP connection:

    /mcp
    

    Should show "Connected to readwise"

  2. Verify environment variables are set correctly in .mcp.json

  3. Check logs in stderr output

State Issues

If state file appears corrupted:

  1. View current state:

    Call readwise_state_info()
    
  2. Reset state (preserve ranges):

    Call readwise_reset_state()
    
  3. Rebuild ranges from filesystem:

    Call readwise_init_ranges()
    

Deduplication Issues

If documents are being imported multiple times:

  1. Rebuild synced ranges:

    Call readwise_init_ranges()
    
  2. Check filesystem for duplicate filenames manually

  3. Verify readwise_url frontmatter is present in existing documents

Architecture

Single-File Design

The server is intentionally kept to a single file (~350 lines) for:

  • Simplicity and maintainability
  • Easy deployment and updates
  • Minimal dependencies
  • Clear code organization

Reused Logic

Key functions reused from .claude/scripts/readwise-backfill.py:

  • load_state() / write_state() - State management
  • optimize_backfill() - Synced range optimization
  • scan_existing_documents() - Filesystem deduplication
  • sanitize_filename() - Safe filename generation
  • extract_id_from_url() - ID extraction

Token Efficiency

Optimizations for reduced token usage:

  • 8 tools vs 13+ in Node.js version (38% reduction)
  • Combined operations (fetch + dedupe + save in one call)
  • Smart defaults minimize required parameters
  • Tool descriptions limited to 20-30 words
  • Returns structured summaries, not full markdown dumps

Estimated token overhead reduction: ~60%

Comparison with Node.js Version

Feature Python MCP Node.js MCP
Lines of code ~350 ~6,749
Tool count 8 13+
Dependencies 4 10+
State compatibility
Token efficiency High Medium
Maintenance Simple Complex

Development

Running locally for development

source venv/bin/activate
python server.py

Adding new tools

  1. Add tool function using @mcp.tool() decorator
  2. Follow existing patterns for error handling and logging
  3. Return structured dict with status field
  4. Add tests to test_server.py
  5. Update README.md with tool documentation

License

MIT

Credits

  • Built with FastMCP by Anthropic
  • Based on proven logic from .claude/scripts/readwise-backfill.py
  • Designed for token efficiency and simplicity

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured