RagRabbit

RagRabbit

Access any documentation indexed by RagRabbit Open Source AI site search

madarco

Content Fetching
AI Content Generation
Visit Server

README

<h1 style="font-weight:normal"> <a href="https://ragrabbit.com"> <img src="./apps/saas/public/logo.svg" alt="RagRabbit" width=35> </a>  RagRabbit  <a href="https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Fmadarco%2Fragrabbit&env=OPENAI_API_KEY,AUTH_USERNAME,AUTH_PASSWORD,AUTH_SECRET&envDescription=Get%20an%20OpenAI%20Api%20Key%20and%20set%20AUTH_USERNAME%20and%20AUTH_PASSWORD%20to%20the%20desired%20credentials%20to%20secure%20the%20admin%20section.%20Also%20be%20sure%20to%20enable%20the%20Postgres%20database%20integration&envLink=https%3A%2F%2Fplatform.openai.com%2Fapi-keys&demo-title=RagRabbit%20-%20AI%20Site%20Search%20and%20LLM.txt&demo-description=Site%20AI%20Search%20and%20LLM.txt%20in%20Minutes%2C%20Open%20Source%20with%201%20Click%20Deploy%20on%20Vercel.&demo-url=https%3A%2F%2Fragrabbit.vercel.app%2F&demo-image=https%3A%2F%2Fragrabbit.vercel.app%2Fopengraph-image.png&stores=%5B%7B%22type%22%3A%22postgres%22%7D%5D&root-directory=apps/saas"><img src="https://img.shields.io/badge/deploy%20on-vercel-black.svg"></a> <a href="https://github.com/madarco/ragrabbit/blob/master/license.md"><img src=https://img.shields.io/github/license/madarco/ragrabbit.svg?colorB=ff0000></a> <a href="https://www.npmjs.com/package/@ragrabbit/mcp"><img src="https://img.shields.io/npm/d18m/%40ragrabbit%2Fmcp?label=npm" /></a> <img src="https://img.shields.io/github/stars/madarco/ragrabbit" /> </h1>

Self Hosted Site AI Search, LLMs.txt, MCP Server that crawls your content. 1-Click Deploy on Vercel. <br>

<p align="center">

RagRabbit </p>

Deploy with Vercel

How it works

RagRabbit is a Next.js Turborepo app that uses Llamaindex with pgVector.

Features

  • 💬 Chat Widget: Embeddable AI Chat agent and instant Search
  • 🕸️ Website Crawler: scrapes and index pages with pgVector and PostgreSQL
  • 📄 LLMs.txt Generation: fully customizable wiht ToC reorder
  • 🔌 MCP Server: npx @ragrabbit/mcp to access your docs from Claude Desktop and Cursor IDE
  • 🛠️ Flexible: Authentication, Open Source, API Keys access
  • 🚀 Easy Deployment: One-click setup on Vercel

Integrations:

Demo

View RagRabbit Demo Page

RagRabbit Demo

Install

To install on Vercel:

Deploy with Vercel

Requirements:

  • Node.js 20.x
  • PostgreSQL w/ pgVector
  • OpenAI API Key
  • (Optional) Trigger.dev API Key

Configuration

Set the following environment variables:

  • OPENAI_API_KEY

For username/password login:

  • ADMIN_USER
  • ADMIN_PASSWORD

For email login:

  • RESEND_AUTH=true
  • To restrict access to those emails: RESEND_ALLOWED_EMAILS="test@test.com,foo@bar.com"
  • To not send emails but logs the login link instead (in Vercel logs): SIMULATE_EMAILS=true

See .env.example for the complete list.

How to use

Use the Indexing section to add a new url/website to index, either a single url or a website to crawl recursively:

RagRabbit Indexing RagRabbit Crawl Modal

Then start the Job Runner (keep the tab open until it finish)

RagRabbit Job Runner

In the LLM.txt section you can preview the generated LLM.txt file:

RagRabbit LLM.txt

You can then embed the widget in your site with the following snippet:

Chat Button

Embed a button at the bottom of your page:

<script src="https://<your deployed app>/widget.js"></script>

RagRabbit Embed Widget Button

Chat Widget

Insert a search input anwhere in your page:

RagRabbit Widget

<script src="https://ragrabbit.com/widget.js?type=search"></script>
<ragrabbit-search></ragrabbit-search>

To use with React.js

"use client";

import Script from "next/script";

export function RagRabbitSearch() {
  return (
    <>
      <Script src="/widget.js?type=search" strategy="lazyOnload" />
      <style>{`
        ragrabbit-search .ragrabbit-search-input {
            padding: 6px 12px;
        }
      `}</style>
      <div className="ml-auto min-w-[300px] flex-1 sm:flex-initial">
        {/* @ts-ignore - Custom element will be mounted by external script */}
        <ragrabbit-search></ragrabbit-search>
      </div>
    </>
  );
}

MPC Server

The MCP Server allows any supported AI Clients to retrieve pages from your documentation using semantic search.

Claude Desktop

Add a custom mcp server with the name of your product, so that Claude AI can use it when looking for info about it.

in claude_desktop_config.json (Claude -> Settings -> Developer -> Edit Config)

{
  "mcpServers": {
    "<name_of_your_documentation_no_spaces>": {
      "command": "npx",
      "args": ["@ragrabbit/mcp", "http://<RagRabbit install>/", "<name of your documentation>"]
    }
  }
}

In Cursor IDE

Go to Cursor -> Settings -> Cursor Settings -> MCP

And add a new MCP of type command with the command:

npx @ragrabbit/mcp", "http://<RagRabbit install>/", "<name of your documentation>"

Arguments:

  • ragrabbit-url: (Required) The base URL of your RagRabbit instance, eg https://my-ragrabbit.vercel.com/
  • name: (Required) Custom name for the documentation search service (defaults to "RagRabbit") so that AI will know to use it when looking for info

Configuration Options

Chat button

You can configure the chat button by adding the following parameters to the widget.js script tag:

buttonText

<script src="https://ragrabbit.com/widget.js?buttonText=Ask%20AI"></script>

Search widget

You can configure the search widget by adding the following parameters and use the mountSearch call:

searchPlaceholder

<div id="search-container"></div>
<script>
  window.mountSearch("search-container", { searchPlaceholder: "Search documentation..." });
</script>

Integrations

Fumadocs

Create a component to replace the Search Dialog:

pnpm add @ragrabbit/search-react
"use client";
import type { SharedProps } from "fumadocs-ui/components/dialog/search";
import { RagRabbitModal } from "@ragrabbit/search-react";

export default function SearchDialog({ open, onOpenChange }: SharedProps) {
  return <RagRabbitModal
    domain="http://localhost:3000/"
    open={open}
    onOpenChange={onOpenChange}
    />;
}

Then set it in the layout.tsx:

<RootProvider
  search={{
    SearchDialog,
  }}
>
  ...
</RootProvider>

Optionally add the Floating Chat button:

"use client";
import { RagRabbitChatButton } from "@ragrabbit/search-react";

export default function ChatButton() {
  return <RagRabbitChatButton domain="http://localhost:3000/" />;
}

And add it to the layout.tsx:

<body className="flex flex-col min-h-screen">
  <ChatButton />
  ...

Development

# Start the db (Docker needed)
pnpm dev:utils # Starts postgresql with pgvector, Storybook and Drizzle ORM Studio

# Start the app
cd apps/saas
pnpm dev

Directory structure:

RagRabbit is a monorepo with Turborepo a Next.js app and a modular design with separate packages.

apps/
├── docs -> the documentation site
├── saas -> the main application
└── web -> the web site
packages/
├── db -> the database with Drizzle ORM
├── auth -> the authentication with Auth.js
├── core -> shared utils
├── design -> the design system
├── rag -> the LLM and RAG package with LlamaIndexTS
├── jobs -> job runner with Trigger.dev
└── storybook -> a Next.js Storybook app
.cursorrules -> Fine tuned Cursor rules with all the locations to work with the monorepo

Author

Marco D'Alia - @madarco - Linkedin

License

MIT

Recommended Servers

Mult Fetch MCP Server

Mult Fetch MCP Server

A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).

Featured
Local
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
Hyperbrowser MCP Server

Hyperbrowser MCP Server

Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to

Featured
Local
React MCP

React MCP

react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Featured
Local
Any OpenAI Compatible API Integrations

Any OpenAI Compatible API Integrations

Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.

Featured
Exa MCP

Exa MCP

A Model Context Protocol server that enables AI assistants like Claude to perform real-time web searches using the Exa AI Search API in a safe and controlled manner.

Featured
AI 图像生成服务

AI 图像生成服务

可用于cursor 集成 mcp server

Featured
Web Research Server

Web Research Server

A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.

Featured
Perplexity Chat MCP Server

Perplexity Chat MCP Server

MCP Server for the Perplexity API.

Featured