RAGFlow MCP Server

RAGFlow MCP Server

Provides a comprehensive Model Context Protocol interface for RAGFlow, enabling AI models to perform semantic retrieval, manage datasets, and handle document chunks. It supports advanced features like GraphRAG and RAPTOR for sophisticated knowledge base management and natural language querying.

Category
Visit Server

README

RAGFlow MCP Server

A comprehensive Model Context Protocol (MCP) server for RAGFlow that provides full API access for semantic retrieval and knowledge base management.

Features

  • Semantic Retrieval: Search across datasets using natural language queries
  • Dataset Management: Create, list, update, and delete datasets
  • Document Management: Upload, parse, list, download, and delete documents
  • Chunk Management: Add, list, update, and delete document chunks
  • Chat Assistants: Create and manage chat assistants with RAG capabilities
  • Session Management: Create and manage chat sessions
  • GraphRAG & RAPTOR: Build and query knowledge graphs (when supported by your RAGFlow instance)

Installation

Prerequisites

  • Python 3.10+
  • RAGFlow server running and accessible (v0.16.0+ for core features)
  • RAGFlow API key

Note: GraphRAG and RAPTOR build APIs require RAGFlow v0.21.0 or later.

Install from source

git clone https://github.com/Juxsta/ragflow-mcp.git
cd ragflow-mcp
pip install -e .

Configure Claude Code

Add to your Claude Code MCP settings:

claude mcp add ragflow -e RAGFLOW_API_KEY=your-api-key -e RAGFLOW_URL=http://localhost:9380/api/v1 -- python -m ragflow_mcp.server

Or manually add to ~/.claude/settings.json:

{
  "mcpServers": {
    "ragflow": {
      "command": "python",
      "args": ["-m", "src.server"],
      "cwd": "/path/to/ragflow-mcp",
      "env": {
        "RAGFLOW_API_KEY": "your-api-key",
        "RAGFLOW_URL": "http://localhost:9380/api/v1"
      }
    }
  }
}

Environment Variables

Variable Required Default Description
RAGFLOW_API_KEY Yes - Your RAGFlow API key
RAGFLOW_URL No http://localhost:9380/api/v1 RAGFlow API base URL
RAGFLOW_TIMEOUT No 300 Request timeout in seconds
RAGFLOW_LOG_LEVEL No INFO Logging level

Available Tools

Retrieval

  • ragflow_retrieval_tool - Semantic search across datasets

Dataset Management

  • ragflow_list_datasets_tool - List all datasets
  • ragflow_create_dataset_tool - Create a new dataset
  • ragflow_update_dataset_tool - Update dataset configuration
  • ragflow_delete_dataset_tool - Delete a dataset (requires confirmation)

Document Management

  • ragflow_list_documents_tool - List documents in a dataset
  • ragflow_upload_document_tool - Upload a document (file path or base64)
  • ragflow_parse_document_tool - Trigger async document parsing
  • ragflow_parse_document_sync_tool - Parse and wait for completion
  • ragflow_download_document_tool - Download document content
  • ragflow_delete_document_tool - Delete a document (requires confirmation)
  • ragflow_stop_parsing_tool - Cancel an active parsing job

Chunk Management

  • ragflow_list_chunks_tool - List chunks in a document
  • ragflow_add_chunk_tool - Add a chunk to a document
  • ragflow_update_chunk_tool - Update chunk content/keywords
  • ragflow_delete_chunk_tool - Delete chunks (requires confirmation)

Chat & Sessions

  • ragflow_list_chats_tool - List chat assistants
  • ragflow_create_chat_tool - Create a chat assistant
  • ragflow_update_chat_tool - Update chat configuration
  • ragflow_delete_chat_tool - Delete a chat assistant (requires confirmation)
  • ragflow_list_sessions_tool - List sessions for a chat
  • ragflow_create_session_tool - Create a new session
  • ragflow_chat_tool - Send a message and get a response

GraphRAG & RAPTOR

  • ragflow_build_graph_tool - Build knowledge graph for a dataset
  • ragflow_graph_status_tool - Check graph construction status
  • ragflow_get_graph_tool - Retrieve the knowledge graph
  • ragflow_delete_graph_tool - Delete a knowledge graph (requires confirmation)
  • ragflow_build_raptor_tool - Build RAPTOR tree for a dataset
  • ragflow_raptor_status_tool - Check RAPTOR construction status

Usage Examples

Semantic Search

Query: "What is the main character's motivation?"
Dataset: your-dataset-id

Upload and Parse a Document

1. Upload: ragflow_upload_document_tool(dataset_id, file_path="/path/to/doc.pdf")
2. Parse: ragflow_parse_document_sync_tool(document_id)
3. Search: ragflow_retrieval_tool(query="your question", dataset_ids=[dataset_id])

Development

Run Tests

pip install -e ".[dev]"
pytest tests/ -v

Project Structure

ragflow-mcp/
├── src/
│   ├── __init__.py
│   ├── server.py          # FastMCP server setup
│   ├── connector.py       # RAGFlow API client
│   ├── config.py          # Configuration management
│   ├── cache.py           # LRU cache implementation
│   └── tools/
│       ├── retrieval.py   # Semantic search
│       ├── datasets.py    # Dataset CRUD
│       ├── documents.py   # Document management
│       ├── chunks.py      # Chunk management
│       ├── chat.py        # Chat & sessions
│       └── graph.py       # GraphRAG & RAPTOR
├── tests/
│   └── ...
├── pyproject.toml
└── README.md

Safety Features

All delete operations require explicit confirm=True parameter to prevent accidental data loss.

License

MIT License

Acknowledgments

  • RAGFlow - The RAG engine this MCP server integrates with
  • FastMCP - The MCP framework used for building this server

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured