RAGFlow MCP Server
Provides a comprehensive Model Context Protocol interface for RAGFlow, enabling AI models to perform semantic retrieval, manage datasets, and handle document chunks. It supports advanced features like GraphRAG and RAPTOR for sophisticated knowledge base management and natural language querying.
README
RAGFlow MCP Server
A comprehensive Model Context Protocol (MCP) server for RAGFlow that provides full API access for semantic retrieval and knowledge base management.
Features
- Semantic Retrieval: Search across datasets using natural language queries
- Dataset Management: Create, list, update, and delete datasets
- Document Management: Upload, parse, list, download, and delete documents
- Chunk Management: Add, list, update, and delete document chunks
- Chat Assistants: Create and manage chat assistants with RAG capabilities
- Session Management: Create and manage chat sessions
- GraphRAG & RAPTOR: Build and query knowledge graphs (when supported by your RAGFlow instance)
Installation
Prerequisites
- Python 3.10+
- RAGFlow server running and accessible (v0.16.0+ for core features)
- RAGFlow API key
Note: GraphRAG and RAPTOR build APIs require RAGFlow v0.21.0 or later.
Install from source
git clone https://github.com/Juxsta/ragflow-mcp.git
cd ragflow-mcp
pip install -e .
Configure Claude Code
Add to your Claude Code MCP settings:
claude mcp add ragflow -e RAGFLOW_API_KEY=your-api-key -e RAGFLOW_URL=http://localhost:9380/api/v1 -- python -m ragflow_mcp.server
Or manually add to ~/.claude/settings.json:
{
"mcpServers": {
"ragflow": {
"command": "python",
"args": ["-m", "src.server"],
"cwd": "/path/to/ragflow-mcp",
"env": {
"RAGFLOW_API_KEY": "your-api-key",
"RAGFLOW_URL": "http://localhost:9380/api/v1"
}
}
}
}
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
RAGFLOW_API_KEY |
Yes | - | Your RAGFlow API key |
RAGFLOW_URL |
No | http://localhost:9380/api/v1 |
RAGFlow API base URL |
RAGFLOW_TIMEOUT |
No | 300 |
Request timeout in seconds |
RAGFLOW_LOG_LEVEL |
No | INFO |
Logging level |
Available Tools
Retrieval
ragflow_retrieval_tool- Semantic search across datasets
Dataset Management
ragflow_list_datasets_tool- List all datasetsragflow_create_dataset_tool- Create a new datasetragflow_update_dataset_tool- Update dataset configurationragflow_delete_dataset_tool- Delete a dataset (requires confirmation)
Document Management
ragflow_list_documents_tool- List documents in a datasetragflow_upload_document_tool- Upload a document (file path or base64)ragflow_parse_document_tool- Trigger async document parsingragflow_parse_document_sync_tool- Parse and wait for completionragflow_download_document_tool- Download document contentragflow_delete_document_tool- Delete a document (requires confirmation)ragflow_stop_parsing_tool- Cancel an active parsing job
Chunk Management
ragflow_list_chunks_tool- List chunks in a documentragflow_add_chunk_tool- Add a chunk to a documentragflow_update_chunk_tool- Update chunk content/keywordsragflow_delete_chunk_tool- Delete chunks (requires confirmation)
Chat & Sessions
ragflow_list_chats_tool- List chat assistantsragflow_create_chat_tool- Create a chat assistantragflow_update_chat_tool- Update chat configurationragflow_delete_chat_tool- Delete a chat assistant (requires confirmation)ragflow_list_sessions_tool- List sessions for a chatragflow_create_session_tool- Create a new sessionragflow_chat_tool- Send a message and get a response
GraphRAG & RAPTOR
ragflow_build_graph_tool- Build knowledge graph for a datasetragflow_graph_status_tool- Check graph construction statusragflow_get_graph_tool- Retrieve the knowledge graphragflow_delete_graph_tool- Delete a knowledge graph (requires confirmation)ragflow_build_raptor_tool- Build RAPTOR tree for a datasetragflow_raptor_status_tool- Check RAPTOR construction status
Usage Examples
Semantic Search
Query: "What is the main character's motivation?"
Dataset: your-dataset-id
Upload and Parse a Document
1. Upload: ragflow_upload_document_tool(dataset_id, file_path="/path/to/doc.pdf")
2. Parse: ragflow_parse_document_sync_tool(document_id)
3. Search: ragflow_retrieval_tool(query="your question", dataset_ids=[dataset_id])
Development
Run Tests
pip install -e ".[dev]"
pytest tests/ -v
Project Structure
ragflow-mcp/
├── src/
│ ├── __init__.py
│ ├── server.py # FastMCP server setup
│ ├── connector.py # RAGFlow API client
│ ├── config.py # Configuration management
│ ├── cache.py # LRU cache implementation
│ └── tools/
│ ├── retrieval.py # Semantic search
│ ├── datasets.py # Dataset CRUD
│ ├── documents.py # Document management
│ ├── chunks.py # Chunk management
│ ├── chat.py # Chat & sessions
│ └── graph.py # GraphRAG & RAPTOR
├── tests/
│ └── ...
├── pyproject.toml
└── README.md
Safety Features
All delete operations require explicit confirm=True parameter to prevent accidental data loss.
License
MIT License
Acknowledgments
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.