Qwen3-VL Video Understanding MCP Server
Enables AI agents to analyze, summarize, and extract text from videos and images using the Qwen3-VL-8B-Instruct model deployed on Blaxel. It supports media analysis via URL, including video Q\&A and speech transcription capabilities.
README
Qwen3-VL Video Understanding MCP Server (Blaxel)
An MCP (Model Context Protocol) server that enables Claude and other AI agents to analyze videos and images using Qwen3-VL-8B-Instruct deployed on Blaxel.
Features
- Video Analysis: Analyze videos via URL with custom prompts
- Image Analysis: Analyze images via URL
- Video Summarization: Generate summaries in different styles
- Text Extraction: Extract on-screen text and transcribe speech
- Video Q&A: Ask specific questions about video content
- H100 GPUs: Fast inference on NVIDIA H100 GPUs via Blaxel
Architecture
Claude/Agent → MCP Server → Blaxel API → Qwen3-VL (H100 GPUs)
Prerequisites
- Blaxel Account: Sign up at blaxel.ai
- Blaxel CLI: Install the Blaxel CLI
- ffmpeg: Required for video frame extraction
- Python 3.10+
Quick Start
1. Deploy the Model to Blaxel
cat << 'EOF' | blaxel apply -f -
apiVersion: blaxel.ai/v1alpha1
kind: Model
metadata:
name: qwen-qwen3-vl-8b-instruct
displayName: Qwen/Qwen3-VL-8B-Instruct
spec:
enabled: true
policies: []
flavors:
- name: nvidia-h100/x4
type: gpu
runtime:
model: Qwen/Qwen3-VL-8B-Instruct
type: hf_private_endpoint
image: ''
args: []
endpointName: qwenqwen3-vl-8b-instruct-nvidia-h100
organization: adamanz
integrationConnections:
- huggingface-4s2m2h
EOF
Or use the provided config:
blaxel apply -f blaxel-model.yaml
2. Get Your API Key
blaxel auth token
3. Install the MCP Server
cd qwen-video-blaxel-mcp
pip install -e .
Or with uv:
uv pip install -e .
4. Configure Environment
cp .env.example .env
# Edit .env with your Blaxel API key
5. Add to Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"qwen3-video-blaxel": {
"command": "uv",
"args": [
"--directory",
"/path/to/qwen-video-blaxel-mcp",
"run",
"server.py"
],
"env": {
"BLAXEL_API_KEY": "your-blaxel-api-key",
"BLAXEL_MODEL": "qwen-qwen3-vl-8b-instruct"
}
}
}
}
6. Restart Claude Desktop
The qwen3-video-blaxel tools should now be available.
Available Tools
analyze_video
Analyze a video with a custom prompt.
analyze_video(
video_url="https://example.com/video.mp4",
question="What happens in this video?",
max_frames=8
)
analyze_image
Analyze an image with a custom prompt.
analyze_image(
image_url="https://example.com/image.jpg",
question="Describe this image"
)
summarize_video
Generate a video summary.
summarize_video(
video_url="https://example.com/video.mp4",
style="detailed" # brief, standard, or detailed
)
video_qa
Ask specific questions about a video.
video_qa(
video_url="https://example.com/video.mp4",
question="How many people appear?"
)
extract_video_text
Extract text and transcribe speech.
extract_video_text(
video_url="https://example.com/presentation.mp4"
)
check_configuration
Check the Blaxel API configuration.
list_capabilities
List all server capabilities.
Configuration
| Environment Variable | Description | Default |
|---|---|---|
BLAXEL_API_KEY |
Your Blaxel API key | Required |
BLAXEL_API_URL |
Blaxel API URL | https://api.blaxel.ai/v1 |
BLAXEL_MODEL |
Model name | qwen-qwen3-vl-8b-instruct |
Requirements
- ffmpeg: Required for video frame extraction
# macOS brew install ffmpeg # Ubuntu/Debian apt install ffmpeg
Supported Formats
Video: mp4, webm, mov, avi
Image: jpg, jpeg, png, gif, webp
Comparison: Modal vs Blaxel
| Feature | Modal | Blaxel |
|---|---|---|
| Model | Qwen2.5-VL-7B | Qwen3-VL-8B |
| GPU | A100 | H100 |
| Pricing | Pay-per-second | Subscription |
| Cold Start | ~30-60s | Faster |
| Setup | Deploy code | Apply YAML |
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.