QuestDB MCP Server
Enables AI assistants to interact with QuestDB time-series databases through tools for querying data, inserting records using InfluxDB Line Protocol, and managing table schemas with automatic creation.
README
QuestDB MCP Server
A Model Context Protocol (MCP) server for QuestDB that enables AI assistants to interact with QuestDB databases through tools for querying and inserting data.
Features
- Query Execution: Execute SELECT queries on QuestDB tables with structured output
- Data Insertion: Insert data into QuestDB tables using the InfluxDB Line Protocol
- Table Management: List tables and describe table schemas
- Automatic Schema Creation: Tables and columns are created automatically on insert
- Type Safety: Full TypeScript support with Zod schema validation
- Structured Output: All tools return structured content with output schemas
- MCP Logging: Integrated MCP logging messages for better observability
- Error Handling: Comprehensive error handling with graceful degradation
- Server Instructions: Built-in server instructions for AI assistants
- Graceful Shutdown: Proper cleanup on SIGINT/SIGTERM signals
Prerequisites
- Node.js v16 or newer
- QuestDB instance running (see QuestDB Quick Start)
Installation
As a Package
Install from npm:
npm install questdb-mcp
Note: This package is publicly available on npm. No authentication or configuration is required to install or use it.
From Source
-
Clone this repository or navigate to the project directory:
cd questdb-mcp -
Install dependencies:
npm install -
Build the project:
npm run build
Configuration
The server can be configured using environment variables:
QUESTDB_HOST- QuestDB host (default:localhost)QUESTDB_PORT- QuestDB port (default:9000)QUESTDB_USERNAME- QuestDB username (optional, for authentication)QUESTDB_PASSWORD- QuestDB password (optional, for authentication)QUESTDB_AUTO_FLUSH_ROWS- Auto-flush after N rows (optional)QUESTDB_AUTO_FLUSH_INTERVAL- Auto-flush interval in milliseconds (optional)
Usage
This package can be used in two ways:
1. CLI Usage
Run the MCP server directly:
npm start
Or for development:
npm run dev
Or install globally:
npm install -g questdb-mcp
questdb-mcp
2. Library Usage
Install as a dependency in your TypeScript project:
npm install questdb-mcp
Basic Usage
import { QuestDBMCPServer, loadConfig } from 'questdb-mcp';
// Load configuration from environment variables
const config = loadConfig();
// Create server instance
const server = new QuestDBMCPServer(config);
// Start the server
await server.run();
Custom Configuration
import { QuestDBMCPServer, QuestDBConfig } from 'questdb-mcp';
const config: QuestDBConfig = {
host: 'localhost',
port: 9000,
username: 'admin',
password: 'quest',
};
const server = new QuestDBMCPServer(config, {
setupProcessHandlers: false, // Don't set up process handlers when using as library
serverName: 'my-questdb-server',
serverVersion: '1.0.0',
instructions: 'Custom server instructions...',
});
await server.run();
Using with Custom Transport
import { QuestDBMCPServer, QuestDBConfig } from 'questdb-mcp';
import { StreamableHTTPServerTransport } from '@modelcontextprotocol/sdk/server/streamableHttp.js';
import express from 'express';
const config: QuestDBConfig = {
host: 'localhost',
port: 9000,
};
const server = new QuestDBMCPServer(config, {
setupProcessHandlers: false,
});
const app = express();
app.use(express.json());
app.post('/mcp', async (req, res) => {
const transport = new StreamableHTTPServerTransport({
sessionIdGenerator: undefined,
enableJsonResponse: true,
});
res.on('close', () => {
transport.close();
});
await server.server.connect(transport);
await transport.handleRequest(req, res, req.body);
});
app.listen(3000, () => {
console.log('MCP server running on http://localhost:3000/mcp');
});
Accessing Internal Components
import { QuestDBMCPServer } from 'questdb-mcp';
const server = new QuestDBMCPServer(config);
// Access the underlying MCP server
const mcpServer = server.server;
// Access the QuestDB client
const client = server.questDBClient;
// Access the logger
const logger = server.log;
// Use the client directly
const tables = await client.listTables();
const result = await client.query('SELECT * FROM my_table LIMIT 10');
// Use the logger
await logger.info('Custom log message', { metadata: 'value' });
Creating Custom Tools
import { QuestDBMCPServer, QuestDBConfig } from 'questdb-mcp';
import { z } from 'zod';
const config: QuestDBConfig = {
host: 'localhost',
port: 9000,
};
const server = new QuestDBMCPServer(config, {
setupProcessHandlers: false,
});
// Access the underlying MCP server to register custom tools
server.server.registerTool(
'my-custom-tool',
{
title: 'My Custom Tool',
description: 'A custom tool that uses QuestDB',
inputSchema: {
param: z.string().describe('A parameter'),
},
},
async ({ param }) => {
// Use the QuestDB client
const client = server.questDBClient;
const result = await client.query(`SELECT * FROM my_table WHERE col = '${param}'`);
return {
content: [
{
type: 'text',
text: JSON.stringify(result, null, 2),
},
],
};
}
);
await server.run();
Shutdown
// Gracefully shutdown the server
await server.shutdown();
TypeScript Types
All types are exported and available for use:
import type {
QuestDBConfig,
QueryResult,
QuestDBMCPServerOptions,
} from 'questdb-mcp';
Available Tools
1. query
Execute a SQL SELECT query on QuestDB.
Parameters:
query(string, required): The SQL query to execute (SELECT queries only)format(string, optional): Output format -jsonorcsv(default:json)
Example:
{
"query": "SELECT * FROM trades LIMIT 10",
"format": "json"
}
2. insert
Insert data into a QuestDB table. Tables and columns are created automatically if they don't exist.
Parameters:
table(string, required): The name of the table to insert intodata(object, required): An object containing the data to insert- Keys are column names
- Values are the data (strings, numbers, booleans)
- Use
timestampkey for explicit timestamp (milliseconds since epoch) - If
timestampis not provided, the current time is used
Example:
{
"table": "trades",
"data": {
"symbol": "ETH-USD",
"side": "sell",
"price": 2615.54,
"amount": 0.00044,
"timestamp": 1699123456789
}
}
3. list_tables
List all tables in the QuestDB database.
Parameters: None
4. describe_table
Get the schema of a specific table.
Parameters:
table(string, required): The name of the table to describe
Example:
{
"table": "trades"
}
QuestDB Setup
Quick Start with Docker
docker run \
-p 9000:9000 -p 9009:9009 -p 8812:8812 -p 9003:9003 \
questdb/questdb:9.1.1
Quick Start with Homebrew (macOS)
brew install questdb
The QuestDB Web Console will be available at: http://localhost:9000
Development
Building
npm run build
Type Checking
npm run typecheck
Development Mode
npm run dev
Data Types
The insert tool automatically maps JavaScript types to QuestDB types:
- String →
SYMBOL(indexed string type) - Number (integer) →
LONG - Number (float) →
DOUBLE - Boolean →
BOOLEAN - Timestamp →
TIMESTAMP(when using thetimestampfield)
Security Notes
- Only SELECT queries are allowed through the
querytool for safety - The server uses the QuestDB REST API for queries and the InfluxDB Line Protocol for inserts
- Authentication is supported via username/password if your QuestDB instance requires it
Examples
Inserting Trade Data
{
"tool": "insert",
"arguments": {
"table": "trades",
"data": {
"symbol": "BTC-USD",
"side": "buy",
"price": 39269.98,
"amount": 0.001
}
}
}
Querying Data
{
"tool": "query",
"arguments": {
"query": "SELECT symbol, price, amount FROM trades WHERE symbol = 'BTC-USD' ORDER BY timestamp DESC LIMIT 10"
}
}
Listing Tables
{
"tool": "list_tables",
"arguments": {}
}
License
MIT
Resources
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.