QuantumArchitect MCP
Enables AI agents to create, validate, evaluate, and score quantum circuits with support for multiple hardware platforms. Provides tools for generating quantum algorithms (Bell states, Grover's, VQE), simulating circuits, checking hardware compatibility, and assessing circuit quality metrics.
README
title: QuantumArchitect MCP emoji: โ๏ธ colorFrom: indigo colorTo: purple sdk: gradio sdk_version: 6.0.1 app_file: app.py pinned: false license: mit short_description: Quantum Circuit Architect & MCP Server for AI Agents tags:
- building-mcp-track-enterprise
- building-mcp-track-consumer
- building-mcp-track-creative
- Google-Gemini-API
VIDEO: https://youtu.be/E1Ailx1X1YE SOCIAL: https://www.linkedin.com/posts/nicolas-larenas_quantumarchitect-mcp-a-hugging-face-space-activity-7401024993893044225-RF-R?utm_source=share&utm_medium=member_desktop&rcm=ACoAADmu0wIBjvA0DVdHvqncNUVTEW72gbiGUps
QuantumArchitect-MCP ๐ฌโ๏ธ
A Python-based MCP (Model Context Protocol) Server for Quantum Circuit creation, validation, and evaluation. This serves as a "Quantum Logic Engine" that AI Agents can call upon to validate, score, and execute quantum logic.
๐ Features
- Circuit Creation: Generate Bell States, GHZ States, QFT, Grover's Algorithm, and VQE Ansatz circuits
- Circuit Validation: Syntax checking, connectivity validation for real hardware, unitarity verification
- Circuit Evaluation: Statevector simulation, noise estimation, resource estimation
- Circuit Scoring: Complexity metrics, expressibility scores, hardware fitness evaluation
- MCP Endpoints: Full MCP protocol support for AI Agent integration
- Hardware Profiles: Support for IBM, Rigetti, and other quantum hardware topologies
๐ฆ Installation
For Hugging Face Spaces
This project is designed to run directly on Hugging Face Spaces. Simply clone and deploy!
Local Installation
pip install -r requirements.txt
python app.py
๐ Quick Start
1. Start the Application
python app.py
The app will start at http://127.0.0.1:7861
2. Build Your First Circuit
- Open the web interface in your browser
- Go to the "Circuit Builder" tab
- Click the "H" button to add a Hadamard gate
- Click "Simulate" to see the results
- View the Bloch sphere visualization of the qubit state
3. Try a Bell State
- Go to the "Templates" tab
- Select "Bell State" from the dropdown
- Click "Load Template"
- Click "Simulate" to see entangled output (50/50 probabilities)
4. Validate a Circuit
- Go to the "Validate" tab
- Paste or enter QASM code
- Select target hardware (e.g., "ibm_eagle")
- Click "Validate" to check syntax, connectivity, and unitarity
๐ง Project Structure
QuantumArchitect-MCP/
โโโ app.py # Main entry point (Gradio + MCP)
โโโ requirements.txt # Dependencies
โโโ pyproject.toml # Project configuration
โโโ src/
โ โโโ mcp_server/ # MCP Protocol handling
โ โ โโโ server.py # MCP capabilities definition
โ โ โโโ schemas.py # JSON schemas for I/O
โ โ โโโ context_provider.py # Resource providers
โ โโโ core/ # Quantum engine core
โ โ โโโ circuit_parser.py # QASM/circuit parsing
โ โ โโโ dag_representation.py # Internal DAG model
โ โ โโโ exceptions.py # Custom exceptions
โ โโโ plugins/ # Modular components
โ โ โโโ creation/ # Circuit generation
โ โ โโโ validation/ # Circuit validation
โ โ โโโ evaluation/ # Circuit evaluation
โ โ โโโ scoring/ # Circuit scoring
โ โโโ data/ # Knowledge base
โ โโโ hardware_profiles/ # Hardware topology configs
โ โโโ reference_circuits/ # Standard algorithm references
โโโ tests/ # Test suite
๐ฏ MCP Endpoints
Creation Tools
create_bell_state: Generate a 2-qubit Bell state circuitcreate_ghz_state: Generate an N-qubit GHZ statecreate_qft: Generate Quantum Fourier Transform circuitcreate_grover: Generate Grover's search algorithmcreate_vqe_ansatz: Generate VQE variational ansatz
Validation Tools
validate_syntax: Check circuit syntax validityvalidate_connectivity: Verify hardware topology compatibilityvalidate_unitarity: Check if circuit is properly unitary
Evaluation Tools
simulate_statevector: Get ideal simulation resultsestimate_noise: Estimate circuit noise accumulationestimate_resources: Calculate required shots and resources
Scoring Tools
score_complexity: Get circuit depth, gate count, widthscore_expressibility: Evaluate VQC expressibility (QML)score_hardware_fitness: Rate circuit for specific hardware
๐ฅ๏ธ Usage
Web Interface
Access the Gradio UI at the deployed URL or http://localhost:7860 for local runs.
MCP Integration
Connect your AI Agent to the MCP endpoints:
# Example: Claude Desktop configuration
{
"mcpServers": {
"quantum-architect": {
"url": "https://your-space.hf.space/mcp"
}
}
}
๐ Learning Path Integration
This tool follows the "Zero to Hero" quantum computing curriculum:
- Level 0 (Beginner): Use creation templates (Bell, GHZ states)
- Level 1 (Practitioner): Validate circuits against real hardware
- Level 2 (Advanced): Evaluate noise and optimize for NISQ devices
- Level 3 (PhD/Hero): Score expressibility and develop new algorithms
๐ค AI Agent Integration
Available MCP Tools
| Tool | Description | Parameters |
|---|---|---|
mcp_create_circuit |
Create from template | template_name, num_qubits, parameters_json |
mcp_parse_qasm |
Parse OpenQASM code | qasm_code, qasm_version |
mcp_build_circuit |
Build custom circuit | num_qubits, gates_json, measurements_json |
mcp_validate_circuit |
Validate circuit | qasm_code, hardware_target, check_connectivity, check_unitary |
mcp_check_hardware |
Check hardware compatibility | qasm_code, hardware_name |
mcp_simulate |
Simulate circuit | qasm_code, shots, include_statevector, noise_model |
mcp_get_statevector |
Get ideal statevector | qasm_code |
mcp_estimate_fidelity |
Estimate hardware fidelity | qasm_code, hardware_name |
mcp_score_circuit |
Score circuit | qasm_code, hardware_name |
mcp_compare_circuits |
Compare multiple circuits | circuits_json, hardware_name |
mcp_get_gate_info |
Gate documentation | gate_name |
mcp_get_algorithm_info |
Algorithm explanation | algorithm_name |
mcp_list_hardware |
List hardware profiles | - |
mcp_list_templates |
List circuit templates | - |
mcp_get_learning_path |
Get learning resources | level |
Supported Hardware Profiles
- IBM Eagle (127 qubits, heavy-hex topology)
- Rigetti Aspen (80 qubits, octagonal topology)
- IonQ Aria (25 qubits, all-to-all connectivity)
Circuit Templates
bell_state- Maximally entangled 2-qubit stateghz_state- N-qubit GHZ entangled statew_state- N-qubit W statesuperposition- Uniform superpositionqft- Quantum Fourier Transformgrover- Grover's search algorithmvqe- VQE variational ansatzqaoa- QAOA optimization circuit
๐งช Running Tests
pytest tests/ -v
๐ License
MIT License - See LICENSE file for details.
๐ Acknowledgments
Built with:
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.