QRadar MCP Server

QRadar MCP Server

Bridges LLMs with IBM QRadar SIEM by providing access to over 728 REST API endpoints through four intelligent tool definitions. It enables security analysts to interact with offenses, assets, and rules using natural language while maintaining high token efficiency.

Category
Visit Server

README

QRadar MCP Server

Model Context Protocol (MCP) server for IBM QRadar SIEM - Access 728+ QRadar REST API endpoints through just 4 intelligent MCP tools.


🎯 What is This?

QRadar MCP Server bridges the gap between Large Language Models (LLMs) and IBM QRadar SIEM. It enables natural language interactions with your security dataβ€”no need to memorize 728 API endpoints.

The Problem

  • QRadar has 728+ REST API endpoints β€” overwhelming for developers and LLMs alike
  • Traditional approach: Define each endpoint as a separate tool β†’ massive token consumption
  • Result: Expensive API calls, slow responses, context limits exceeded

The Solution

Instead of exposing 728 tools, we expose just 4 intelligent tools:

Traditional Approach MCP Server Approach
728 tool definitions 4 tool definitions
~50,000 tokens/request ~2,000 tokens/request
Context overflow risk Fits any LLM context
Slow tool discovery Instant endpoint lookup

Token Efficiency

  • 96% reduction in tool definition tokens
  • 25x faster LLM processing
  • Works with any LLM (Claude, GPT, Gemini, Llama)

Who Should Use This?

  • Security analysts wanting natural language QRadar queries
  • DevOps teams automating security workflows
  • AI developers building QRadar-integrated applications
  • SOC teams needing quick incident data access

🌐 Experience It Live

IBM MCP Client (Web UI)

Try the full experience with our React + FastAPI client:

Live Demo: http://9.30.147.112:8000 πŸš€

Container Registry: ghcr.io/addanuj/ibm-mcp-client:latest

Try: "Show me top 10 offenses", "How many assets?", "Get QRadar version", "List 5 rules"


πŸ—οΈ Architecture

graph TB
    subgraph "Client Layer"
        A[MCP Client/LLM] 
    end
    
    subgraph "MCP Server Container"
        B[Python FastAPI Server<br/>Port: 8001]
        C[4 MCP Tools]
        D[QRadar API Wrapper<br/>728 Endpoints]
    end
    
    subgraph "QRadar SIEM"
        E[REST API<br/>v26.0+]
        F[Offenses]
        G[Assets]
        H[Rules]
        I[Ariel Search]
    end
    
    A -->|HTTP/SSE or stdio| B
    B --> C
    C --> D
    D -->|HTTPS REST| E
    E --> F
    E --> G
    E --> H
    E --> I
    
    style A fill:#e1f5ff
    style B fill:#fff3e0
    style C fill:#f3e5f5
    style D fill:#e8f5e9
    style E fill:#fce4ec

πŸ“¦ What's Inside

4 Intelligent Tools

Tool Description Example
qradar_get Fetch data from 728 endpoints Get offenses, assets, rules
qradar_execute Create/update resources Create reference sets, update rules
qradar_delete Remove resources Delete offense notes
qradar_discover Auto-discover endpoints Find correct API paths

Supported Endpoints (728 total)

  • SIEM: Offenses, sources, destinations
  • Assets: Asset model, vulnerabilities, compliance
  • Analytics: Rules, building blocks, searches
  • Ariel: AQL queries, searches, results
  • Reference Data: Sets, maps, collections
  • Config: Domains, log sources, users
  • System: Health, licensing, servers

πŸš€ Quick Start

Option 1: Pull Public Image from GitHub (Recommended)

No build required! Pull our pre-built multi-architecture image and run instantly.

Public Container Registry: ghcr.io/addanuj/qradar-mcp-server:latest

Step 1: Pull the image

docker pull ghcr.io/addanuj/qradar-mcp-server:latest

Step 2: Prepare your QRadar credentials

  • QRadar Console URL: https://your-qradar-console.com
  • API Token: Get from QRadar Console β†’ Admin β†’ Authorized Services

Step 3: Run the container

docker run -d \
  --name qradar-mcp-server \
  -p 8001:8001 \
  -e QRADAR_HOST="https://your-qradar-console.com" \
  -e QRADAR_API_TOKEN="your-sec-token-here" \
  -e QRADAR_VERIFY_SSL="false" \
  ghcr.io/addanuj/qradar-mcp-server:latest \
  --host 0.0.0.0 --port 8001

Step 4: Verify it's running

# Check container status
docker ps | grep qradar-mcp-server

# Check health endpoint
curl http://localhost:8001/health
# Expected: {"status":"healthy","mode":"http","tools":4,"endpoints":728}

Supported Architectures:

  • βœ… AMD64 (x86_64) - Intel/AMD processors
  • βœ… ARM64 (aarch64) - Apple Silicon, AWS Graviton

Image Details:

  • Registry: GitHub Container Registry (ghcr.io)
  • Image: ghcr.io/addanuj/qradar-mcp-server:latest
  • Public Access: No authentication needed
  • Auto-updated: New commits trigger automatic builds

Option 2: Build from Source (Run as Container)

# Clone repository
git clone https://github.ibm.com/ashrivastava/QRadar-MCP-Server.git
cd QRadar-MCP-Server

# Build container image
docker build -t qradar-mcp-server:latest -f container/Dockerfile .

# Run as container
docker run -d \
  --name qradar-mcp-server \
  -p 8001:8001 \
  -e QRADAR_HOST="https://your-qradar.com" \
  -e QRADAR_API_TOKEN="token" \
  qradar-mcp-server:latest \
  --host 0.0.0.0 --port 8001

Option 3: Local Development (Run as Python Service)

# Install dependencies
pip install -e .

# Set environment variables
export QRADAR_HOST="https://your-qradar.com"
export QRADAR_API_TOKEN="your-token"

# Run in stdio mode (for Claude Desktop)
python -m src.server

# OR run in HTTP mode for local testing
python -m src.server --host 0.0.0.0 --port 8001

πŸ”§ Configuration

Environment Variables

Variable Required Default Description
QRADAR_HOST βœ… Yes - Full QRadar console URL (https://...)
QRADAR_API_TOKEN βœ… Yes - QRadar API authorization token
QRADAR_VERIFY_SSL ❌ No false Verify SSL certificates
QRADAR_API_VERSION ❌ No 26.0 QRadar API version

Runtime Modes

HTTP/SSE Mode (Recommended for Containers)

python -m src.server --host 0.0.0.0 --port 8001
  • Exposes REST API on port 8001
  • Health check: http://localhost:8001/health
  • Tools list: http://localhost:8001/tools
  • SSE streaming support

stdio Mode (for Claude Desktop)

python -m src.server
  • Communicates via stdin/stdout
  • Use in Claude Desktop MCP configuration
  • No network exposure needed

Usage Examples

Check Server Health

curl http://localhost:8001/health
# Response: {"status":"healthy","mode":"http","tools":4,"endpoints":728}

List Available Tools

curl http://localhost:8001/tools

Call a Tool (Get Offenses)

curl -X POST http://localhost:8001/tools/call \
  -H "Content-Type: application/json" \
  -d '{
    "name": "qradar_get",
    "arguments": {
      "endpoint": "/siem/offenses",
      "limit": 10,
      "qradar_host": "https://your-qradar.com",
      "qradar_token": "your-token"
    }
  }'

Discover Endpoints

curl -X POST http://localhost:8001/tools/call \
  -H "Content-Type: application/json" \
  -d '{
    "name": "qradar_discover",
    "arguments": {
      "search": "offenses",
      "qradar_host": "https://your-qradar.com",
      "qradar_token": "your-token"
    }
  }'

πŸ“ Project Structure

QRadar-MCP-Server/
β”œβ”€β”€ container/
β”‚   └── Dockerfile              # Multi-arch container definition
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ __main__.py            # Entry point
β”‚   β”œβ”€β”€ server.py              # FastAPI server (HTTP mode)
β”‚   β”œβ”€β”€ client.py              # QRadar API client wrapper
β”‚   └── tools.py               # 4 MCP tools with 728 endpoint definitions
└── pyproject.toml             # Python package config

🚦 Supported QRadar Versions

  • QRadar 7.3.x βœ… (tested)
  • QRadar 7.4.x βœ… (tested)
  • QRadar 7.5.x βœ… (tested)

πŸ“ž Support

Reporting Issues & Feature Requests

Found a bug?

  1. Go to: https://github.ibm.com/ashrivastava/QRadar-MCP-Server/issues
  2. Click "New Issue"
  3. Provide: clear title, steps to reproduce, QRadar version, and logs (docker logs qradar-mcp-server)

Have a suggestion?

  1. Open issue with [Feature Request] prefix
  2. Describe use case and expected behavior

Need help?

  • Check logs: docker logs qradar-mcp-server
  • Search existing issues: https://github.ibm.com/ashrivastava/QRadar-MCP-Server/issues
  • Contact: ashrivastava@ibm.com

⚠️ Disclaimer

This is a Minimum Viable Product (MVP) for testing and demonstration purposes only.

  • NOT for production use
  • No warranty or support guarantees
  • Use at your own risk
  • For production deployments, conduct thorough security review and testing
  • IBM is not responsible for any issues arising from the use of this software

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured