QRadar MCP Server
Bridges LLMs with IBM QRadar SIEM by providing access to over 728 REST API endpoints through four intelligent tool definitions. It enables security analysts to interact with offenses, assets, and rules using natural language while maintaining high token efficiency.
README
QRadar MCP Server
Model Context Protocol (MCP) server for IBM QRadar SIEM - Access 728+ QRadar REST API endpoints through just 4 intelligent MCP tools.
π― What is This?
QRadar MCP Server bridges the gap between Large Language Models (LLMs) and IBM QRadar SIEM. It enables natural language interactions with your security dataβno need to memorize 728 API endpoints.
The Problem
- QRadar has 728+ REST API endpoints β overwhelming for developers and LLMs alike
- Traditional approach: Define each endpoint as a separate tool β massive token consumption
- Result: Expensive API calls, slow responses, context limits exceeded
The Solution
Instead of exposing 728 tools, we expose just 4 intelligent tools:
| Traditional Approach | MCP Server Approach |
|---|---|
| 728 tool definitions | 4 tool definitions |
| ~50,000 tokens/request | ~2,000 tokens/request |
| Context overflow risk | Fits any LLM context |
| Slow tool discovery | Instant endpoint lookup |
Token Efficiency
- 96% reduction in tool definition tokens
- 25x faster LLM processing
- Works with any LLM (Claude, GPT, Gemini, Llama)
Who Should Use This?
- Security analysts wanting natural language QRadar queries
- DevOps teams automating security workflows
- AI developers building QRadar-integrated applications
- SOC teams needing quick incident data access
π Experience It Live
IBM MCP Client (Web UI)
Try the full experience with our React + FastAPI client:
Live Demo: http://9.30.147.112:8000 π
Container Registry: ghcr.io/addanuj/ibm-mcp-client:latest
Try: "Show me top 10 offenses", "How many assets?", "Get QRadar version", "List 5 rules"
ποΈ Architecture
graph TB
subgraph "Client Layer"
A[MCP Client/LLM]
end
subgraph "MCP Server Container"
B[Python FastAPI Server<br/>Port: 8001]
C[4 MCP Tools]
D[QRadar API Wrapper<br/>728 Endpoints]
end
subgraph "QRadar SIEM"
E[REST API<br/>v26.0+]
F[Offenses]
G[Assets]
H[Rules]
I[Ariel Search]
end
A -->|HTTP/SSE or stdio| B
B --> C
C --> D
D -->|HTTPS REST| E
E --> F
E --> G
E --> H
E --> I
style A fill:#e1f5ff
style B fill:#fff3e0
style C fill:#f3e5f5
style D fill:#e8f5e9
style E fill:#fce4ec
π¦ What's Inside
4 Intelligent Tools
| Tool | Description | Example |
|---|---|---|
qradar_get |
Fetch data from 728 endpoints | Get offenses, assets, rules |
qradar_execute |
Create/update resources | Create reference sets, update rules |
qradar_delete |
Remove resources | Delete offense notes |
qradar_discover |
Auto-discover endpoints | Find correct API paths |
Supported Endpoints (728 total)
- SIEM: Offenses, sources, destinations
- Assets: Asset model, vulnerabilities, compliance
- Analytics: Rules, building blocks, searches
- Ariel: AQL queries, searches, results
- Reference Data: Sets, maps, collections
- Config: Domains, log sources, users
- System: Health, licensing, servers
π Quick Start
Option 1: Pull Public Image from GitHub (Recommended)
No build required! Pull our pre-built multi-architecture image and run instantly.
Public Container Registry: ghcr.io/addanuj/qradar-mcp-server:latest
Step 1: Pull the image
docker pull ghcr.io/addanuj/qradar-mcp-server:latest
Step 2: Prepare your QRadar credentials
- QRadar Console URL:
https://your-qradar-console.com - API Token: Get from QRadar Console β Admin β Authorized Services
Step 3: Run the container
docker run -d \
--name qradar-mcp-server \
-p 8001:8001 \
-e QRADAR_HOST="https://your-qradar-console.com" \
-e QRADAR_API_TOKEN="your-sec-token-here" \
-e QRADAR_VERIFY_SSL="false" \
ghcr.io/addanuj/qradar-mcp-server:latest \
--host 0.0.0.0 --port 8001
Step 4: Verify it's running
# Check container status
docker ps | grep qradar-mcp-server
# Check health endpoint
curl http://localhost:8001/health
# Expected: {"status":"healthy","mode":"http","tools":4,"endpoints":728}
Supported Architectures:
- β AMD64 (x86_64) - Intel/AMD processors
- β ARM64 (aarch64) - Apple Silicon, AWS Graviton
Image Details:
- Registry: GitHub Container Registry (ghcr.io)
- Image:
ghcr.io/addanuj/qradar-mcp-server:latest - Public Access: No authentication needed
- Auto-updated: New commits trigger automatic builds
Option 2: Build from Source (Run as Container)
# Clone repository
git clone https://github.ibm.com/ashrivastava/QRadar-MCP-Server.git
cd QRadar-MCP-Server
# Build container image
docker build -t qradar-mcp-server:latest -f container/Dockerfile .
# Run as container
docker run -d \
--name qradar-mcp-server \
-p 8001:8001 \
-e QRADAR_HOST="https://your-qradar.com" \
-e QRADAR_API_TOKEN="token" \
qradar-mcp-server:latest \
--host 0.0.0.0 --port 8001
Option 3: Local Development (Run as Python Service)
# Install dependencies
pip install -e .
# Set environment variables
export QRADAR_HOST="https://your-qradar.com"
export QRADAR_API_TOKEN="your-token"
# Run in stdio mode (for Claude Desktop)
python -m src.server
# OR run in HTTP mode for local testing
python -m src.server --host 0.0.0.0 --port 8001
π§ Configuration
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
QRADAR_HOST |
β Yes | - | Full QRadar console URL (https://...) |
QRADAR_API_TOKEN |
β Yes | - | QRadar API authorization token |
QRADAR_VERIFY_SSL |
β No | false |
Verify SSL certificates |
QRADAR_API_VERSION |
β No | 26.0 |
QRadar API version |
Runtime Modes
HTTP/SSE Mode (Recommended for Containers)
python -m src.server --host 0.0.0.0 --port 8001
- Exposes REST API on port 8001
- Health check:
http://localhost:8001/health - Tools list:
http://localhost:8001/tools - SSE streaming support
stdio Mode (for Claude Desktop)
python -m src.server
- Communicates via stdin/stdout
- Use in Claude Desktop MCP configuration
- No network exposure needed
Usage Examples
Check Server Health
curl http://localhost:8001/health
# Response: {"status":"healthy","mode":"http","tools":4,"endpoints":728}
List Available Tools
curl http://localhost:8001/tools
Call a Tool (Get Offenses)
curl -X POST http://localhost:8001/tools/call \
-H "Content-Type: application/json" \
-d '{
"name": "qradar_get",
"arguments": {
"endpoint": "/siem/offenses",
"limit": 10,
"qradar_host": "https://your-qradar.com",
"qradar_token": "your-token"
}
}'
Discover Endpoints
curl -X POST http://localhost:8001/tools/call \
-H "Content-Type: application/json" \
-d '{
"name": "qradar_discover",
"arguments": {
"search": "offenses",
"qradar_host": "https://your-qradar.com",
"qradar_token": "your-token"
}
}'
π Project Structure
QRadar-MCP-Server/
βββ container/
β βββ Dockerfile # Multi-arch container definition
βββ src/
β βββ __init__.py
β βββ __main__.py # Entry point
β βββ server.py # FastAPI server (HTTP mode)
β βββ client.py # QRadar API client wrapper
β βββ tools.py # 4 MCP tools with 728 endpoint definitions
βββ pyproject.toml # Python package config
π¦ Supported QRadar Versions
- QRadar 7.3.x β (tested)
- QRadar 7.4.x β (tested)
- QRadar 7.5.x β (tested)
π Support
Reporting Issues & Feature Requests
Found a bug?
- Go to: https://github.ibm.com/ashrivastava/QRadar-MCP-Server/issues
- Click "New Issue"
- Provide: clear title, steps to reproduce, QRadar version, and logs (
docker logs qradar-mcp-server)
Have a suggestion?
- Open issue with [Feature Request] prefix
- Describe use case and expected behavior
Need help?
- Check logs:
docker logs qradar-mcp-server - Search existing issues: https://github.ibm.com/ashrivastava/QRadar-MCP-Server/issues
- Contact: ashrivastava@ibm.com
β οΈ Disclaimer
This is a Minimum Viable Product (MVP) for testing and demonstration purposes only.
- NOT for production use
- No warranty or support guarantees
- Use at your own risk
- For production deployments, conduct thorough security review and testing
- IBM is not responsible for any issues arising from the use of this software
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.