Qdrant MCP Server

Qdrant MCP Server

Enables semantic code search across codebases using Qdrant vector database and OpenAI embeddings, allowing users to find code by meaning rather than just keywords through natural language queries.

Category
Visit Server

README

Qdrant MCP Server

A Model Context Protocol (MCP) server that provides semantic code search capabilities using Qdrant vector database and OpenAI embeddings.

Features

  • 🔍 Semantic Code Search - Find code by meaning, not just keywords
  • 🚀 Fast Indexing - Efficient incremental indexing of large codebases
  • 🤖 MCP Integration - Works seamlessly with Claude and other MCP clients
  • 📊 Background Monitoring - Automatic reindexing of changed files
  • 🎯 Smart Filtering - Respects .gitignore and custom patterns
  • 💾 Persistent Storage - Embeddings stored in Qdrant for fast retrieval

Installation

Prerequisites

  • Node.js 18+
  • Python 3.8+
  • Docker (for Qdrant) or Qdrant Cloud account
  • OpenAI API key

Quick Start

# Install the package
npm install -g @kindash/qdrant-mcp-server

# Or with pip
pip install qdrant-mcp-server

# Set up environment variables
export OPENAI_API_KEY="your-api-key"
export QDRANT_URL="http://localhost:6333"  # or your Qdrant Cloud URL
export QDRANT_API_KEY="your-qdrant-api-key"  # if using Qdrant Cloud

# Start Qdrant (if using Docker)
docker run -p 6333:6333 qdrant/qdrant

# Index your codebase
qdrant-indexer /path/to/your/code

# Start the MCP server
qdrant-mcp

Configuration

Environment Variables

Create a .env file in your project root:

# Required
OPENAI_API_KEY=sk-...

# Qdrant Configuration
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=  # Optional, for Qdrant Cloud
QDRANT_COLLECTION_NAME=codebase  # Default: codebase

# Indexing Configuration
MAX_FILE_SIZE=1048576  # Maximum file size to index (default: 1MB)
BATCH_SIZE=10  # Number of files to process in parallel
EMBEDDING_MODEL=text-embedding-3-small  # OpenAI embedding model

# File Patterns
INCLUDE_PATTERNS=**/*.{js,ts,jsx,tsx,py,java,go,rs,cpp,c,h}
EXCLUDE_PATTERNS=**/node_modules/**,**/.git/**,**/dist/**

MCP Configuration

Add to your Claude Desktop config (~/.claude/config.json):

{
  "mcpServers": {
    "qdrant-search": {
      "command": "qdrant-mcp",
      "args": ["--collection", "my-codebase"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        "QDRANT_URL": "http://localhost:6333"
      }
    }
  }
}

Usage

Command Line Interface

# Index entire codebase
qdrant-indexer /path/to/code

# Index with custom patterns
qdrant-indexer /path/to/code --include "*.py" --exclude "tests/*"

# Index specific files
qdrant-indexer file1.js file2.py file3.ts

# Start background indexer
qdrant-control start

# Check indexer status
qdrant-control status

# Stop background indexer
qdrant-control stop

In Claude

Once configured, you can use natural language queries:

  • "Find all authentication code"
  • "Show me files that handle user permissions"
  • "What code is similar to the PaymentService class?"
  • "Find all API endpoints related to users"
  • "Show me error handling patterns in the codebase"

Programmatic Usage

from qdrant_mcp_server import QdrantIndexer, QdrantSearcher

# Initialize indexer
indexer = QdrantIndexer(
    openai_api_key="sk-...",
    qdrant_url="http://localhost:6333",
    collection_name="my-codebase"
)

# Index files
indexer.index_directory("/path/to/code")

# Search
searcher = QdrantSearcher(
    qdrant_url="http://localhost:6333",
    collection_name="my-codebase"
)

results = searcher.search("authentication logic", limit=10)
for result in results:
    print(f"{result.file_path}: {result.score}")

Architecture

┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│   Claude/MCP    │────▶│  MCP Server      │────▶│     Qdrant      │
│     Client      │     │  (Python)        │     │   Vector DB     │
└─────────────────┘     └──────────────────┘     └─────────────────┘
                               │                           ▲
                               ▼                           │
                        ┌──────────────────┐              │
                        │  OpenAI API      │              │
                        │  (Embeddings)    │──────────────┘
                        └──────────────────┘

Advanced Configuration

Custom File Processors

from qdrant_mcp_server import FileProcessor

class MyCustomProcessor(FileProcessor):
    def process(self, file_path: str, content: str) -> dict:
        # Custom processing logic
        return {
            "content": processed_content,
            "metadata": custom_metadata
        }

# Register processor
indexer.register_processor(".myext", MyCustomProcessor())

Embedding Models

Support for multiple embedding providers:

# OpenAI (default)
indexer = QdrantIndexer(embedding_provider="openai")

# Cohere
indexer = QdrantIndexer(
    embedding_provider="cohere",
    cohere_api_key="..."
)

# Local models (upcoming)
indexer = QdrantIndexer(
    embedding_provider="local",
    model_path="/path/to/model"
)

Performance Optimization

Batch Processing

# Process files in larger batches (reduces API calls)
qdrant-indexer /path/to/code --batch-size 50

# Limit concurrent requests
qdrant-indexer /path/to/code --max-concurrent 5

Incremental Indexing

# Only index changed files since last run
qdrant-indexer /path/to/code --incremental

# Force reindex of all files
qdrant-indexer /path/to/code --force

Cost Estimation

# Estimate indexing costs before running
qdrant-indexer /path/to/code --dry-run

# Output:
# Files to index: 1,234
# Estimated tokens: 2,456,789
# Estimated cost: $0.43

Monitoring

Web UI (Coming Soon)

# Start monitoring dashboard
qdrant-mcp --web-ui --port 8080

Logs

# View indexer logs
tail -f ~/.qdrant-mcp/logs/indexer.log

# View search queries
tail -f ~/.qdrant-mcp/logs/queries.log

Metrics

  • Files indexed
  • Tokens processed
  • Search queries per minute
  • Average response time
  • Cache hit rate

Troubleshooting

Common Issues

"Connection refused" error

  • Ensure Qdrant is running: docker ps
  • Check QDRANT_URL is correct
  • Verify firewall settings

"Rate limit exceeded" error

  • Reduce batch size: --batch-size 5
  • Add delay between requests: --delay 1000
  • Use a different OpenAI tier

"Out of memory" error

  • Process fewer files at once
  • Increase Node.js memory: NODE_OPTIONS="--max-old-space-size=4096"
  • Use streaming mode for large files

Debug Mode

# Enable verbose logging
qdrant-mcp --debug

# Test connectivity
qdrant-mcp --test-connection

# Validate configuration
qdrant-mcp --validate-config

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Development Setup

# Clone the repository
git clone https://github.com/kindash/qdrant-mcp-server
cd qdrant-mcp-server

# Install dependencies
npm install
pip install -e .

# Run tests
npm test
pytest

# Run linting
npm run lint
flake8 src/

License

MIT License - see LICENSE for details.

Acknowledgments

Support

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured