Qdrant MCP Server
Enables semantic code search across codebases using Qdrant vector database and OpenAI embeddings, allowing users to find code by meaning rather than just keywords through natural language queries.
README
Qdrant MCP Server
A Model Context Protocol (MCP) server that provides semantic code search capabilities using Qdrant vector database and OpenAI embeddings.
Features
- 🔍 Semantic Code Search - Find code by meaning, not just keywords
- 🚀 Fast Indexing - Efficient incremental indexing of large codebases
- 🤖 MCP Integration - Works seamlessly with Claude and other MCP clients
- 📊 Background Monitoring - Automatic reindexing of changed files
- 🎯 Smart Filtering - Respects .gitignore and custom patterns
- 💾 Persistent Storage - Embeddings stored in Qdrant for fast retrieval
Installation
Prerequisites
- Node.js 18+
- Python 3.8+
- Docker (for Qdrant) or Qdrant Cloud account
- OpenAI API key
Quick Start
# Install the package
npm install -g @kindash/qdrant-mcp-server
# Or with pip
pip install qdrant-mcp-server
# Set up environment variables
export OPENAI_API_KEY="your-api-key"
export QDRANT_URL="http://localhost:6333" # or your Qdrant Cloud URL
export QDRANT_API_KEY="your-qdrant-api-key" # if using Qdrant Cloud
# Start Qdrant (if using Docker)
docker run -p 6333:6333 qdrant/qdrant
# Index your codebase
qdrant-indexer /path/to/your/code
# Start the MCP server
qdrant-mcp
Configuration
Environment Variables
Create a .env file in your project root:
# Required
OPENAI_API_KEY=sk-...
# Qdrant Configuration
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY= # Optional, for Qdrant Cloud
QDRANT_COLLECTION_NAME=codebase # Default: codebase
# Indexing Configuration
MAX_FILE_SIZE=1048576 # Maximum file size to index (default: 1MB)
BATCH_SIZE=10 # Number of files to process in parallel
EMBEDDING_MODEL=text-embedding-3-small # OpenAI embedding model
# File Patterns
INCLUDE_PATTERNS=**/*.{js,ts,jsx,tsx,py,java,go,rs,cpp,c,h}
EXCLUDE_PATTERNS=**/node_modules/**,**/.git/**,**/dist/**
MCP Configuration
Add to your Claude Desktop config (~/.claude/config.json):
{
"mcpServers": {
"qdrant-search": {
"command": "qdrant-mcp",
"args": ["--collection", "my-codebase"],
"env": {
"OPENAI_API_KEY": "sk-...",
"QDRANT_URL": "http://localhost:6333"
}
}
}
}
Usage
Command Line Interface
# Index entire codebase
qdrant-indexer /path/to/code
# Index with custom patterns
qdrant-indexer /path/to/code --include "*.py" --exclude "tests/*"
# Index specific files
qdrant-indexer file1.js file2.py file3.ts
# Start background indexer
qdrant-control start
# Check indexer status
qdrant-control status
# Stop background indexer
qdrant-control stop
In Claude
Once configured, you can use natural language queries:
- "Find all authentication code"
- "Show me files that handle user permissions"
- "What code is similar to the PaymentService class?"
- "Find all API endpoints related to users"
- "Show me error handling patterns in the codebase"
Programmatic Usage
from qdrant_mcp_server import QdrantIndexer, QdrantSearcher
# Initialize indexer
indexer = QdrantIndexer(
openai_api_key="sk-...",
qdrant_url="http://localhost:6333",
collection_name="my-codebase"
)
# Index files
indexer.index_directory("/path/to/code")
# Search
searcher = QdrantSearcher(
qdrant_url="http://localhost:6333",
collection_name="my-codebase"
)
results = searcher.search("authentication logic", limit=10)
for result in results:
print(f"{result.file_path}: {result.score}")
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Claude/MCP │────▶│ MCP Server │────▶│ Qdrant │
│ Client │ │ (Python) │ │ Vector DB │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ ▲
▼ │
┌──────────────────┐ │
│ OpenAI API │ │
│ (Embeddings) │──────────────┘
└──────────────────┘
Advanced Configuration
Custom File Processors
from qdrant_mcp_server import FileProcessor
class MyCustomProcessor(FileProcessor):
def process(self, file_path: str, content: str) -> dict:
# Custom processing logic
return {
"content": processed_content,
"metadata": custom_metadata
}
# Register processor
indexer.register_processor(".myext", MyCustomProcessor())
Embedding Models
Support for multiple embedding providers:
# OpenAI (default)
indexer = QdrantIndexer(embedding_provider="openai")
# Cohere
indexer = QdrantIndexer(
embedding_provider="cohere",
cohere_api_key="..."
)
# Local models (upcoming)
indexer = QdrantIndexer(
embedding_provider="local",
model_path="/path/to/model"
)
Performance Optimization
Batch Processing
# Process files in larger batches (reduces API calls)
qdrant-indexer /path/to/code --batch-size 50
# Limit concurrent requests
qdrant-indexer /path/to/code --max-concurrent 5
Incremental Indexing
# Only index changed files since last run
qdrant-indexer /path/to/code --incremental
# Force reindex of all files
qdrant-indexer /path/to/code --force
Cost Estimation
# Estimate indexing costs before running
qdrant-indexer /path/to/code --dry-run
# Output:
# Files to index: 1,234
# Estimated tokens: 2,456,789
# Estimated cost: $0.43
Monitoring
Web UI (Coming Soon)
# Start monitoring dashboard
qdrant-mcp --web-ui --port 8080
Logs
# View indexer logs
tail -f ~/.qdrant-mcp/logs/indexer.log
# View search queries
tail -f ~/.qdrant-mcp/logs/queries.log
Metrics
- Files indexed
- Tokens processed
- Search queries per minute
- Average response time
- Cache hit rate
Troubleshooting
Common Issues
"Connection refused" error
- Ensure Qdrant is running:
docker ps - Check QDRANT_URL is correct
- Verify firewall settings
"Rate limit exceeded" error
- Reduce batch size:
--batch-size 5 - Add delay between requests:
--delay 1000 - Use a different OpenAI tier
"Out of memory" error
- Process fewer files at once
- Increase Node.js memory:
NODE_OPTIONS="--max-old-space-size=4096" - Use streaming mode for large files
Debug Mode
# Enable verbose logging
qdrant-mcp --debug
# Test connectivity
qdrant-mcp --test-connection
# Validate configuration
qdrant-mcp --validate-config
Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
Development Setup
# Clone the repository
git clone https://github.com/kindash/qdrant-mcp-server
cd qdrant-mcp-server
# Install dependencies
npm install
pip install -e .
# Run tests
npm test
pytest
# Run linting
npm run lint
flake8 src/
License
MIT License - see LICENSE for details.
Acknowledgments
- Built for the Model Context Protocol
- Powered by Qdrant vector database
- Embeddings by OpenAI
- Originally developed for KinDash
Support
- 📧 Email: support@kindash.app
- 💬 Discord: Join our community
- 🐛 Issues: GitHub Issues
- 📖 Docs: Full Documentation
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.