Python Server MCP

Python Server MCP

A cryptocurrency price service that provides real-time crypto pricing information through an MCP (Model Context Protocol) framework with CoinMarketCap API integration.

Category
Visit Server

README

Python Server MCP - Cryptocurrency Price Service

This project implements an MCP (Model Context Protocol) server that provides cryptocurrency price information. The server is built using Python and the MCP framework to create an API that can be consumed by different clients.

Docker

Docker build: docker build -t mcp/python-server-mcp -f Dockerfile .

Add the following to your mcp.json file:

{
  "mcpServers": {
    "python-server-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-p",
        "8000:8000",
        "-e",
        "ENVIRONMENT",
        "-e",
        "COINMARKETCAP_API_KEY",
        "mcp/python-server-mcp"
      ],
      "env": {
        "ENVIRONMENT": "PRODUCTION",
        "COINMARKETCAP_API_KEY": "your-api-key",
      }
    }
  }
}

Features

  • Real-time cryptocurrency price retrieval
  • Environment-based configuration (development, production, staging, local)
  • CoinMarketCap API integration
  • Docker container deployment

Requirements

  • Python 3.12+
  • uv (package and virtual environment manager)
  • Docker (optional, for container execution)

Installation

Using uv (recommended)

# Clone the repository
git clone <repository-url>
cd PythonServerMcp

Create and activate virtual environment with uv

uv venv
source .venv/bin/activate

Install dependencies

uv sync

Configuration

  1. Create a .env file in the project root with the following variables:
ENVIRONMENT=DEV  # Options: LOCAL, DEV, STAGING, PROD
COINMARKETCAP_API_KEY=your_api_key_here
  1. You can also create specific environment files for each environment:
    • .dev.env - For development environment
    • .staging.env - For staging environment
    • .prod.env - For production environment

Usage

Local Execution

python main.py

This will start the MCP server that will listen for requests through standard input/output (stdio).

Using Docker

# Build the image
docker build -t test-mcp -f Dockerfile --platform linux/amd64 .

# Run the container
docker run -it test-mcp

Project Structure

.
├── main.py
└── src
    ├── __init__.py
    ├── core
    │   ├── common
    │   │   ├── crypto_schema.py
    │   │   └── schema.py
    │   ├── config.py
    │   ├── settings
    │   │   ├── __init__.py
    │   │   ├── base.py
    │   │   ├── development.py
    │   │   ├── environment.py
    │   │   ├── local.py
    │   │   ├── production.py
    │   │   └── staging.py
    │   └── utils
    │       ├── datetime.py
    │       ├── extended_enum.py
    │       ├── filename_generator.py
    │       ├── passwords.py
    │       ├── query_utils.py
    │       └── redis.py
    ├── mcp_server.py
    ├── resources
    │   ├── __init__.py
    │   └── coinmarketcap_resource.py
    ├── server.py
    ├── services
    │   ├── __init__.py
    │   └── coinmarketcap_service.py
    └── tools
        ├── __init__.py
        └── prices.py

Development

Adding New Tools to the MCP Server

To add a new tool to the MCP server, follow these steps:

  1. Define the function in the src/__init__.py file
  2. Register the tool in the main() function
  3. Document the tool with docstrings

Example:

@server.add_tool
def my_new_tool(parameter1: str, parameter2: int) -> str:
    """
    Description of what the tool does.
    
    Args:
        parameter1: Description of parameter 1
        parameter2: Description of parameter 2
        
    Returns:
        Description of what is returned
    """
    # Tool implementation
    return result

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured