Python Server MCP
A cryptocurrency price service that provides real-time crypto pricing information through an MCP (Model Context Protocol) framework with CoinMarketCap API integration.
README
Python Server MCP - Cryptocurrency Price Service
This project implements an MCP (Model Context Protocol) server that provides cryptocurrency price information. The server is built using Python and the MCP framework to create an API that can be consumed by different clients.
Docker
Docker build:
docker build -t mcp/python-server-mcp -f Dockerfile .
Add the following to your mcp.json file:
{
"mcpServers": {
"python-server-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-p",
"8000:8000",
"-e",
"ENVIRONMENT",
"-e",
"COINMARKETCAP_API_KEY",
"mcp/python-server-mcp"
],
"env": {
"ENVIRONMENT": "PRODUCTION",
"COINMARKETCAP_API_KEY": "your-api-key",
}
}
}
}
Features
- Real-time cryptocurrency price retrieval
- Environment-based configuration (development, production, staging, local)
- CoinMarketCap API integration
- Docker container deployment
Requirements
- Python 3.12+
- uv (package and virtual environment manager)
- Docker (optional, for container execution)
Installation
Using uv (recommended)
# Clone the repository
git clone <repository-url>
cd PythonServerMcp
Create and activate virtual environment with uv
uv venv
source .venv/bin/activate
Install dependencies
uv sync
Configuration
- Create a
.envfile in the project root with the following variables:
ENVIRONMENT=DEV # Options: LOCAL, DEV, STAGING, PROD
COINMARKETCAP_API_KEY=your_api_key_here
- You can also create specific environment files for each environment:
.dev.env- For development environment.staging.env- For staging environment.prod.env- For production environment
Usage
Local Execution
python main.py
This will start the MCP server that will listen for requests through standard input/output (stdio).
Using Docker
# Build the image
docker build -t test-mcp -f Dockerfile --platform linux/amd64 .
# Run the container
docker run -it test-mcp
Project Structure
.
├── main.py
└── src
├── __init__.py
├── core
│ ├── common
│ │ ├── crypto_schema.py
│ │ └── schema.py
│ ├── config.py
│ ├── settings
│ │ ├── __init__.py
│ │ ├── base.py
│ │ ├── development.py
│ │ ├── environment.py
│ │ ├── local.py
│ │ ├── production.py
│ │ └── staging.py
│ └── utils
│ ├── datetime.py
│ ├── extended_enum.py
│ ├── filename_generator.py
│ ├── passwords.py
│ ├── query_utils.py
│ └── redis.py
├── mcp_server.py
├── resources
│ ├── __init__.py
│ └── coinmarketcap_resource.py
├── server.py
├── services
│ ├── __init__.py
│ └── coinmarketcap_service.py
└── tools
├── __init__.py
└── prices.py
Development
Adding New Tools to the MCP Server
To add a new tool to the MCP server, follow these steps:
- Define the function in the
src/__init__.pyfile - Register the tool in the
main()function - Document the tool with docstrings
Example:
@server.add_tool
def my_new_tool(parameter1: str, parameter2: int) -> str:
"""
Description of what the tool does.
Args:
parameter1: Description of parameter 1
parameter2: Description of parameter 2
Returns:
Description of what is returned
"""
# Tool implementation
return result
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.