Python MSSQL MCP Server

Python MSSQL MCP Server

Enables Language Models to interact with Microsoft SQL Server databases by inspecting table schemas, executing SQL queries, and reading table data through a standardized Model Context Protocol interface.

Category
Visit Server

README

Python MSSQL MCP Server

Version Python MCP FastAPI License

A Model Context Protocol server implementation in Python that provides access to Microsoft SQL Server databases. This server enables Language Models to inspect table schemas and execute SQL queries through a standardized interface.

Features

Core Functionality

  • Asynchronous operation using Python's asyncio
  • Environment-based configuration using python-dotenv
  • Comprehensive logging system
  • Connection pooling and management via pyodbc
  • Error handling and recovery
  • FastAPI integration for API endpoints
  • Pydantic models for data validation
  • MSSQL connection handling with ODBC Driver

Prerequisites

  • Python 3.x
  • Required Python packages:
    • pyodbc
    • pydantic
    • python-dotenv
    • mcp-server
  • ODBC Driver 17 for SQL Server

Installation

git clone https://github.com/amornpan/py-mcp-mssql.git
cd py-mcp-mssql
pip install -r requirements.txt

Screenshots

MCP MSSQL Server Demo

The screenshot above demonstrates the server being used with Claude to analyze and visualize SQL data.

Project Structure

PY-MCP-MSSQL/
├── src/
│   └── mssql/
│       ├── __init__.py
│       └── server.py
├── tests/
│   ├── __init__.py
│   ├── test_mssql.py
│   └── test_packages.py
├── .env
├── .env.example
├── .gitignore
├── README.md
└── requirements.txt

Directory Structure Explanation

  • src/mssql/ - Main source code directory
    • __init__.py - Package initialization
    • server.py - Main server implementation
  • tests/ - Test files directory
    • __init__.py - Test package initialization
    • test_mssql.py - MSSQL functionality tests
    • test_packages.py - Package dependency tests
  • .env - Environment configuration file (not in git)
  • .env.example - Example environment configuration
  • .gitignore - Git ignore rules
  • README.md - Project documentation
  • requirements.txt - Project dependencies

Configuration

Create a .env file in the project root:

MSSQL_SERVER=your_server
MSSQL_DATABASE=your_database
MSSQL_USER=your_username
MSSQL_PASSWORD=your_password
MSSQL_DRIVER={ODBC Driver 17 for SQL Server}

API Implementation Details

Resource Listing

@app.list_resources()
async def list_resources() -> list[Resource]
  • Lists all available tables in the database
  • Returns table names with URIs in the format mssql://<table_name>/data
  • Includes table descriptions and MIME types

Resource Reading

@app.read_resource()
async def read_resource(uri: AnyUrl) -> str
  • Reads data from specified table
  • Accepts URIs in the format mssql://<table_name>/data
  • Returns first 100 rows in CSV format
  • Includes column headers

SQL Execution

@app.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]
  • Executes SQL queries
  • Supports both SELECT and modification queries
  • Returns results in CSV format for SELECT queries
  • Returns affected row count for modification queries

Usage with Claude Desktop

Add to your Claude Desktop configuration:

On MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json On Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "mssql": {
      "command": "python",
      "args": [
        "server.py"
      ],
      "env": {
        "MSSQL_SERVER": "your_server",
        "MSSQL_DATABASE": "your_database",
        "MSSQL_USER": "your_username",
        "MSSQL_PASSWORD": "your_password",
        "MSSQL_DRIVER": "{ODBC Driver 17 for SQL Server}"
      }
    }
  }
}

Error Handling

The server implements comprehensive error handling for:

  • Database connection failures
  • Invalid SQL queries
  • Resource access errors
  • URI validation
  • Tool execution errors

All errors are logged and returned with appropriate error messages.

Security Features

  • Environment variable based configuration
  • Connection string security
  • Result set size limits
  • Input validation through Pydantic
  • Proper SQL query handling

Contact Information

Amornpan Phornchaicharoen

Email LinkedIn HuggingFace GitHub

Feel free to reach out to me if you have any questions about this project or would like to collaborate!


Made with ❤️ by Amornpan Phornchaicharoen

License

This project is licensed under the MIT License - see the LICENSE file for details.

Author

Amornpan Phornchaicharoen

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Requirements

Create a requirements.txt file with:

fastapi>=0.104.1
pydantic>=2.10.6
uvicorn>=0.34.0 
python-dotenv>=1.0.1
pyodbc>=4.0.35
anyio>=4.5.0
mcp==1.2.0

These versions have been tested and verified to work together. The key components are:

  • fastapi and uvicorn for the API server
  • pydantic for data validation
  • pyodbc for SQL Server connectivity
  • mcp for Model Context Protocol implementation
  • python-dotenv for environment configuration
  • anyio for asynchronous I/O support

Acknowledgments

  • Microsoft SQL Server team for ODBC drivers
  • Python pyodbc maintainers
  • Model Context Protocol community
  • Contributors to the python-dotenv project

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured