Python Apple MCP

Python Apple MCP

A Python server that enables interaction with macOS native applications (Contacts, Notes, Mail, Messages, Reminders, Calendar, and Maps) through AppleScript, featuring asynchronous operations and type-safe interfaces.

Category
Visit Server

README

Python Apple MCP (Model Context Protocol)

A Python implementation of the server that handles interactions with macOS applications such as Contacts, Notes, Mail, Messages, Reminders, Calendar, and Maps using FastMCP.

Features

  • Interact with macOS native applications through AppleScript
  • Asynchronous operations for better performance
  • Comprehensive error handling
  • Type-safe interfaces using Pydantic models
  • Extensive test coverage
  • Modular design for easy extension

Supported Applications

  • Contacts
  • Notes
  • Mail
  • Messages
  • Reminders
  • Calendar
  • Maps

Installation

  1. Clone the repository:
git clone https://github.com/jxnl/python-apple-mcp.git
cd python-apple-mcp
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Install test dependencies (optional):
pip install -r requirements-test.txt

Usage

Basic Example

from apple_mcp import FastMCP, Context

# Initialize FastMCP server
mcp = FastMCP("Apple MCP")

# Use the tools
@mcp.tool()
def find_contact(name: str) -> List[Contact]:
    """Search for contacts by name"""
    # Implementation here
    pass

# Run the server
if __name__ == "__main__":
    mcp.run()

Using Individual Modules

from utils.contacts import ContactsModule
from utils.notes import NotesModule

# Initialize modules
contacts = ContactsModule()
notes = NotesModule()

# Use the modules
async def main():
    # Find a contact
    contact = await contacts.find_contact("John")
    
    # Create a note
    await notes.create_note(
        title="Meeting Notes",
        body="Discussion points...",
        folder_name="Work"
    )

# Run the async code
import asyncio
asyncio.run(main())

Testing

Run the test suite:

pytest

Run tests with coverage:

pytest --cov=utils tests/

Run specific test file:

pytest tests/test_contacts.py

API Documentation

Contacts Module

  • find_contact(name: str) -> List[Contact]: Search for contacts by name
  • get_all_contacts() -> List[Contact]: Get all contacts
  • create_contact(name: str, phones: List[str]) -> Contact: Create a new contact

Notes Module

  • find_note(query: str) -> List[Note]: Search for notes
  • create_note(title: str, body: str, folder_name: str) -> Note: Create a new note
  • get_all_notes() -> List[Note]: Get all notes

Mail Module

  • send_email(to: str, subject: str, body: str) -> str: Send an email
  • search_emails(query: str) -> List[Email]: Search emails
  • get_unread_mails() -> List[Email]: Get unread emails

Messages Module

  • send_message(to: str, content: str) -> bool: Send an iMessage
  • read_messages(phone_number: str) -> List[Message]: Read messages
  • schedule_message(to: str, content: str, scheduled_time: str) -> Dict: Schedule a message

Reminders Module

  • create_reminder(name: str, list_name: str, notes: str, due_date: str) -> Dict: Create a reminder
  • search_reminders(query: str) -> List[Dict]: Search reminders
  • get_all_reminders() -> List[Dict]: Get all reminders

Calendar Module

  • create_event(title: str, start_date: str, end_date: str, location: str, notes: str) -> Dict: Create an event
  • search_events(query: str) -> List[Dict]: Search events
  • get_events() -> List[Dict]: Get all events

Maps Module

  • search_locations(query: str) -> List[Location]: Search for locations
  • get_directions(from_address: str, to_address: str, transport_type: str) -> str: Get directions
  • save_location(name: str, address: str) -> Dict: Save a location to favorites

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured