Pythagraph RED MCP Server
Enables retrieval and analysis of graph data from the Pythagraph RED API. Provides formatted tables, statistics, node/edge distributions, and comprehensive summaries for graph visualization and insights.
README
pythAIs - Pythagraph RED MCP Server
Node.js server implementing Model Context Protocol (MCP) for Pythagraph RED API access.
Features
- Fetch graph data from Pythagraph RED API
- Detailed graph analysis with nodes, edges, and statistics
- Formatted table outputs for easy visualization
- Comprehensive graph summaries
- Error handling and timeout management
API Integration
This server connects to the Pythagraph RED API at:
https://red.pythagraph.co.kr/api/red/graph/exportGraphInfo.do?graphId={graphId}
Tools
get_graph_data
Retrieve detailed graph data from Pythagraph RED API. Returns comprehensive information including nodes, edges, statistics, and metadata formatted as tables and descriptions.
Input:
graphId(string): The unique identifier for the graph to retrieve
Output:
- Detailed tables showing graph statistics
- Node type distributions
- Edge type distributions
- First 10 nodes with their properties
- First 10 edges with their relationships
- Metadata information
Example:
# MBTI(성질좋은 역순서,점유비율)
## 📊 기본 정보
| 항목 | 값 |
|------|-----|
| Graph ID | G81a6c348-4696-4f04-a164-6e306388ab92 |
| 단위 구분 | 비율 |
| 단위명 | 퍼센트(%) |
| 데이터 건수 | 16건 |
## 📈 데이터 테이블
| 시간 | MBTI유형 | 값 |
|------|----------|-----|
| 15 | ENFP | 12.6% |
| 08 | INFP | 13.4% |
| 04 | INFJ | 6.3% |
get_graph_summary
Get a concise summary of graph data from Pythagraph RED API. Provides overview statistics, node/edge type distributions, and key insights.
Input:
graphId(string): The unique identifier for the graph to get summaryincludeDetails(boolean, optional): Include detailed node and edge information (default: false)
Output:
- Quick overview with node and edge counts
- Node and edge type listings
- Graph density calculation
- Optional detailed tables when
includeDetailsis true
Example:
# MBTI(성질좋은 역순서,점유비율) - 요약
📊 Graph ID: G81a6c348-4696-4f04-a164-6e306388ab92
📊 데이터 건수: 16건
📊 단위: 비율 (퍼센트(%))
📅 등록일: 2023-05-22 15:01
## 🔍 핵심 인사이트
🏆 최고: INFP (13.4%)
📉 최저: ENTJ (2.7%)
📊 총합: 100.0%
Usage with Claude Desktop
Add this to your claude_desktop_config.json:
NPX
{
"mcpServers": {
"pythAIs": {
"command": "npx",
"args": [
"-y",
"pythais-mcp-server"
]
}
}
}
Docker
{
"mcpServers": {
"pythAIs": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"mcp/pythais"
]
}
}
}
Development
Building
npm install
npm run build
Testing
npm test
Docker Build
docker build -t mcp/pythais.
API Response Format
The server expects the Pythagraph RED API to return JSON data in this format:
{
"graphId": "G81a6c348-4696-4f04-a164-6e306388ab92",
"graphNm": "MBTI(성질좋은 역순서,점유비율)",
"graphDet": "<p>MBTI 성격별 인구비율 및 성격더러운 순서</p>",
"unitDivNm": "비율",
"unitNm": "퍼센트(%)",
"link": "https://ddnews.co.kr/mbti-순위/",
"dataSrc": "https://ddnews.co.kr/mbti-순위/",
"dataOrg": "https://ddnews.co.kr/mbti-순위/",
"regUser": "kimhoon1112@gmail.com",
"regTime": "2023-05-22 15:01",
"cols": ["시간", "MBTI유형", "값"],
"cols2": ["T5", "M1", "VALUE"],
"graphData": [
["15", "ENFP", "0.126"],
["08", "INFP", "0.134"],
["04", "INFJ", "0.063"]
],
"regionList": [],
"message": "OK"
}
Error Handling
The server includes comprehensive error handling for:
- Invalid graph IDs
- Network timeouts (30 second limit)
- API response errors
- Invalid JSON responses
- Connection failures
Features
- Automatic Table Formatting: Converts graph data into readable tables
- Statistics Calculation: Computes graph density and type distributions
- Memory Efficient: Only displays first 10 nodes/edges in detailed view
- Flexible Output: Summary mode for quick insights, detailed mode for analysis
- Robust Error Handling: Graceful handling of API failures
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.