
PyMCP Sum Server
A simple MCP server that provides integer addition functionality. Enables users to perform basic arithmetic operations by adding two integers together through natural language interactions.
README
pymcp
a MCP server
SDK
https://github.com/modelcontextprotocol/python-sdk
项目结构
src/
└── mcp_server/
├── __init__.py
└── sum_int.py # MCP服务器实现,提供两个整数相加功能
tests/
├── test_sum_int.py # 基础功能测试
├── test_sum_int_with_real_llm.py # 真实LLM调用测试
└── test_sum_int_with_agent.py # 使用LangChain Agent的测试
环境初始化
安装依赖
使用 uv 管理依赖:
# 安装生产依赖
uv pip install -e .
# 安装测试依赖(包括生产依赖)
uv pip install -e .[test]
配置环境变量
创建 .env
文件并配置LLM相关参数:
cp .env.example .env
编辑 .env
文件,添加以下内容:
LLM_BASE_URL=https://api.siliconflow.cn/v1
LLM_API_KEY=your_api_key_here
LLM_MODEL=Qwen/Qwen3-8B
运行MCP服务器
# 运行MCP服务器
uv run mcp dev src/mcp_server/sum_int.py
或者直接运行:
python src/mcp_server/sum_int.py
真实LLM调用测试
python tests/test_sum_int_with_real_llm.py
使用LangChain Agent的测试
python tests/test_sum_int_with_agent.py
依赖说明
生产依赖:
mcp[cli]>=1.12.4
- MCP Python SDK
测试依赖:
openai>=1.99.9
- OpenAI Python客户端python-dotenv>=1.0.1
- 环境变量加载工具httpx[socks]>=0.28.1
- HTTP客户端(支持SOCKS代理)langchain>=0.3.27
- LangChain核心库langchain-openai>=0.3.29
- LangChain的OpenAI集成langchain-mcp-adapters>=0.1.9
- LangChain与MCP的适配器langgraph>=0.6.4
- LangGraph库,用于构建agent工作流
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.