Pyke MCP Server
An MCP server for the Pyke logic programming engine that enables LLMs to perform logical reasoning using knowledge bases with facts, rules, and queries. It supports session management, forward chaining inference, and bulk loading of programs in Logic-LLM format.
README
Pyke MCP Server
An MCP (Model Context Protocol) server for the Pyke logic programming inference engine. This server enables LLMs to perform logical reasoning through knowledge bases with facts, rules, and queries.
Features
- Fact Management: Add ground truth facts to the knowledge base
- Rule Definition: Define inference rules using forward chaining
- Query Execution: Check if facts can be derived from the knowledge base
- Goal Proving: Find all variable bindings that satisfy a goal
- Session Management: Support multiple independent knowledge bases
- Logic-LLM Compatible: Load programs in Logic-LLM format
Installation
Using pip
pip install pyke-mcp
From source
git clone https://github.com/yourusername/pyke-mcp.git
cd pyke-mcp
pip install -e .
Dependencies
- Python 3.10+
mcp>=1.2.0pyke3>=1.1.1
Quick Start
Running the Server
# Using the installed command
pyke-mcp
# Or using Python
python -m pyke_mcp.server
Configuration for Claude Desktop
Add to your claude_desktop_config.json:
macOS/Linux:
{
"mcpServers": {
"pyke": {
"command": "pyke-mcp"
}
}
}
Windows:
{
"mcpServers": {
"pyke": {
"command": "pyke-mcp"
}
}
}
Or with explicit Python path:
{
"mcpServers": {
"pyke": {
"command": "python",
"args": ["-m", "pyke_mcp.server"]
}
}
}
Available Tools
add_fact
Add a fact to the knowledge base.
Predicate(arg1, arg2, ...)
Examples:
Human(Socrates, True)- Socrates is humanParent(John, Mary)- John is a parent of Mary
add_rule
Add an inference rule using forward chaining.
Premise >>> Conclusion
Premise1 && Premise2 >>> Conclusion
Examples:
Human($x, True) >>> Mortal($x, True)- All humans are mortalParent($x, $y) && Parent($y, $z) >>> Grandparent($x, $z)- Grandparent relationship
add_facts_and_rules
Bulk add multiple facts and rules at once.
query
Check if a specific fact can be derived.
Predicate(Subject, ExpectedValue)
Example:
Mortal(Socrates, True)- "Is Socrates mortal?"
prove_goal
Find all variable bindings that satisfy a goal.
Examples:
Mortal($who, True)- "Who is mortal?"Parent($parent, Mary)- "Who are Mary's parents?"
get_program
Display the current knowledge base contents.
clear_program
Clear all facts and rules from the session.
load_logic_program
Load a complete logic program from formatted text (Logic-LLM compatible).
list_sessions
List all active sessions.
delete_session
Delete a specific session.
Usage Examples
Classic Syllogism
# Add facts
add_fact("Human(Socrates, True)")
add_fact("Human(Plato, True)")
# Add rule
add_rule("Human($x, True) >>> Mortal($x, True)")
# Query
query("Mortal(Socrates, True)")
# Result: True, Match: True
# Find all mortals
prove_goal("Mortal($who, True)")
# Bindings: who=Socrates, who=Plato
Family Relationships
# Facts
add_fact("Parent(Alice, Bob)")
add_fact("Parent(Bob, Charlie)")
add_fact("Parent(Bob, Diana)")
# Rules
add_rule("Parent($x, $y) && Parent($y, $z) >>> Grandparent($x, $z)")
# Find Alice's grandchildren
prove_goal("Grandparent(Alice, $grandchild)")
# Bindings: grandchild=Charlie, grandchild=Diana
Loading a Complete Program
program = """
Predicates:
Human(x, bool)
Mortal(x, bool)
Facts:
Human(Socrates, True)
Human(Aristotle, True)
Rules:
Human($x, True) >>> Mortal($x, True)
Query:
Mortal(Socrates, True)
"""
load_logic_program(program)
Logic Program Format
The server accepts programs in the Logic-LLM format:
Predicates:
PredicateName(arg1_type, arg2_type, ...)
Facts:
PredicateName(value1, value2, ...)
Rules:
Premise($var, value) >>> Conclusion($var, value)
Premise1($x, val) && Premise2($x, val) >>> Conclusion($x, val)
Query:
PredicateName(subject, expected_value)
Syntax Rules
-
Facts: Ground assertions without variables
Human(Socrates, True)Age(John, 30)
-
Rules: Implications with variables (prefixed with
$)Human($x, True) >>> Mortal($x, True)- Multiple premises joined with
&&
-
Variables: Prefixed with
$$x,$person,$value
-
Values: Can be boolean (
True/False) or stringsTrue,False,Socrates,Blue
Session Management
The server supports multiple independent sessions:
# Create/use a session
add_fact("Human(Socrates, True)", session_id="philosophy")
# Use a different session
add_fact("Cat(Whiskers, True)", session_id="animals")
# List sessions
list_sessions()
# Delete a session
delete_session("philosophy")
Error Handling
The server provides clear error messages for:
- Invalid fact/rule syntax
- Query execution failures
- Missing Pyke installation
- Session not found
Based On
- Pyke Knowledge Engine
- Logic-LLM - Pyke solver implementation
- clingo-mcp - MCP server interface reference
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.