pyATS MCP Server
An MCP Server for pyATS (experimental)
automateyournetwork
README
pyATS MCP Server
This project implements a Model Context Protocol (MCP) Server that wraps Cisco pyATS and Genie functionality. It enables structured, model-driven interaction with network devices over STDIO using the JSON-RPC 2.0 protocol.
🚨 This server does not use HTTP or SSE. All communication is done via STDIN/STDOUT (standard input/output), making it ideal for secure, embedded, containerized, or LangGraph-based tool integrations.
🔧 What It Does
Connects to Cisco IOS/NX-OS devices defined in a pyATS testbed
Supports safe execution of validated CLI commands (show, ping)
Allows controlled configuration changes
Returns structured (parsed) or raw output
Exposes a set of well-defined tools via tools/discover and tools/call
Operates entirely via STDIO for minimal surface area and maximum portability
🚀 Usage
- Set your testbed path
export PYATS_TESTBED_PATH=/absolute/path/to/testbed.yaml
- Run the server
Continuous STDIO Mode (default)
python3 pyats_mcp_server.py
Launches a long-running process that reads JSON-RPC requests from stdin and writes responses to stdout.
One-Shot Mode
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/discover"}' | python3 pyats_mcp_server.py --oneshot
Processes a single JSON-RPC request and exits.
📦 Docker Support
Build the container
docker build -t pyats-mcp-server .
Run the container (STDIO Mode)
docker run -i --rm \
-e PYATS_TESTBED_PATH=/app/testbed.yaml \
-v /your/testbed/folder:/app \
pyats-mcp-server
🧠 Available MCP Tools
Tool Description
run_show_command Executes show commands safely with optional parsing
run_ping_command Executes ping tests and returns parsed or raw results
apply_configuration Applies safe configuration commands (multi-line supported)
learn_config Fetches running config (show run brief)
learn_logging Fetches system logs (show logging last 250)
All inputs are validated using Pydantic schemas for safety and consistency.
🤖 LangGraph Integration
Add the MCP server as a tool node in your LangGraph pipeline like so:
("pyats-mcp", ["python3", "pyats_mcp_server.py", "--oneshot"], "tools/discover", "tools/call")
Name: pyats-mcp
Command: python3 pyats_mcp_server.py --oneshot
Discover Method: tools/discover
Call Method: tools/call
STDIO-based communication ensures tight integration with LangGraph’s tool invocation model without opening HTTP ports or exposing REST endpoints.
📜 Example Requests
Discover Tools
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/discover"
}
Run Show Command
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "run_show_command",
"arguments": {
"device_name": "router1",
"command": "show ip interface brief"
}
}
}
🔒 Security Features
Input validation using Pydantic
Blocks unsafe commands like erase, reload, write
Prevents pipe/redirect abuse (e.g., | include, >, copy, etc.)
Gracefully handles parsing fallbacks and errors
📁 Project Structure
.
├── pyats_mcp_server.py # MCP server with JSON-RPC and pyATS integration
├── Dockerfile # Docker container definition
├── testbed.yaml # pyATS testbed (user-provided)
└── README.md # This file
✍️ Author
John Capobianco
Product Marketing Evangelist, Selector AI
Author, Automate Your Network
Let me know if you’d like to add:
A sample LangGraph graph config
Companion client script
CI/CD integration (e.g., GitHub Actions)
Happy to help!
The testbed.yaml file works with the Cisco DevNet Cisco Modeling Labs (CML) Sandbox!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.