PubMed MCP Server

PubMed MCP Server

A comprehensive Model Context Protocol server that enables advanced PubMed literature search, citation formatting, and research analysis through natural language interactions.

Category
Visit Server

README

PubMed MCP Server

CI

A comprehensive Model Context Protocol (MCP) server for PubMed literature search and management. This server provides advanced search capabilities, citation formatting, and research analysis tools through the MCP protocol.

Features

  • Advanced PubMed Search: Search with complex filters including date ranges, article types, authors, journals, and MeSH terms
  • Article Details: Retrieve detailed information for specific PMIDs including abstracts, authors, and metadata
  • Citation Export: Export citations in multiple formats (BibTeX, APA, MLA, Chicago, Vancouver, EndNote, RIS)
  • Author Search: Find articles by specific authors with co-author information
  • Related Articles: Discover articles related to a specific PMID
  • MeSH Term Search: Search and explore Medical Subject Headings
  • Journal Analysis: Get metrics and recent articles from specific journals
  • Research Trends: Analyze publication trends over time
  • Article Comparison: Compare multiple articles side by side
  • Caching: Built-in caching for improved performance
  • Rate Limiting: Respectful API usage with configurable rate limits

Installation

Prerequisites

  • Python 3.8 or higher
  • NCBI API key (free registration required)
  • Valid email address for NCBI API identification

Quick Start

  1. Clone the repository:

    git clone https://github.com/your-org/pubmed-mcp.git
    cd pubmed-mcp
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up environment variables:

    cp env.example .env
    # Edit .env with your NCBI API key and email
    
  4. Run the server:

    python -m src.main
    

Development Installation

For development with additional tools:

make install-dev

Or manually:

pip install -r requirements.txt
pip install -e .
pip install black isort mypy flake8

Configuration

Create a .env file in the project root with the following variables:

# Required
PUBMED_API_KEY=your_ncbi_api_key_here
PUBMED_EMAIL=your.email@example.com

# Optional
CACHE_TTL=300
CACHE_MAX_SIZE=1000
RATE_LIMIT=3.0
LOG_LEVEL=info

Getting an NCBI API Key

  1. Visit NCBI Account Settings
  2. Sign in or create an account
  3. Navigate to "API Key Management"
  4. Create a new API key
  5. Copy the key to your .env file

Usage

Available Tools

The server provides the following MCP tools:

1. search_pubmed

Search PubMed with advanced filtering options.

{
  "query": "machine learning healthcare",
  "max_results": 20,
  "date_range": "5y",
  "article_types": ["Journal Article", "Review"],
  "has_abstract": true
}

2. get_article_details

Get detailed information for specific PMIDs.

{
  "pmids": ["12345678", "87654321"],
  "include_abstracts": true,
  "include_citations": false
}

3. search_by_author

Search for articles by a specific author.

{
  "author_name": "Smith J",
  "max_results": 10,
  "include_coauthors": true
}

4. export_citations

Export citations in various formats.

{
  "pmids": ["12345678"],
  "format": "bibtex",
  "include_abstracts": false
}

5. find_related_articles

Find articles related to a specific PMID.

{
  "pmid": "12345678",
  "max_results": 10
}

6. search_mesh_terms

Search using MeSH terms.

{
  "term": "Machine Learning",
  "max_results": 20
}

7. analyze_research_trends

Analyze publication trends over time.

{
  "topic": "artificial intelligence",
  "years_back": 5,
  "include_subtopics": false
}

Example Usage with MCP Client

import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async def main():
    server_params = StdioServerParameters(
        command="python",
        args=["-m", "src.main"]
    )

    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write) as session:
            # Initialize the session
            await session.initialize()

            # Search PubMed
            result = await session.call_tool(
                "search_pubmed",
                {
                    "query": "COVID-19 vaccines",
                    "max_results": 5,
                    "date_range": "1y"
                }
            )

            print(result.content[0].text)

if __name__ == "__main__":
    asyncio.run(main())

Development

Running Tests

# Run all tests
make test

# Run with coverage
make test-coverage

# Run specific test types
python run_tests.py unit
python run_tests.py integration
python run_tests.py coverage

Code Quality

# Format code
make format

# Run linting
make lint

# Type checking
mypy src/

Project Structure

pubmed-mcp/
├── src/
│   ├── __init__.py
│   ├── main.py              # Entry point
│   ├── server.py            # MCP server implementation
│   ├── models.py            # Pydantic models
│   ├── pubmed_client.py     # PubMed API client
│   ├── tool_handler.py      # Tool request handlers
│   ├── citation_formatter.py # Citation formatting
│   ├── tools.py             # Tool definitions
│   └── utils.py             # Utility functions
├── tests/                   # Test suite
├── requirements.txt         # Dependencies
├── setup.py                 # Package setup
├── pyproject.toml          # Modern Python config
├── Makefile                # Development commands
├── Dockerfile              # Container setup
└── README.md               # This file

Docker

Build and Run

# Build Docker image
make docker-build

# Run with environment variables
make docker-run PUBMED_API_KEY=your_key PUBMED_EMAIL=your_email

Docker Compose

version: '3.8'
services:
  pubmed-mcp:
    build: .
    environment:
      - PUBMED_API_KEY=your_key
      - PUBMED_EMAIL=your_email
      - LOG_LEVEL=info
    volumes:
      - ./data:/app/data

API Reference

Search Parameters

  • query: Search query using PubMed syntax
  • max_results: Maximum number of results (1-200)
  • sort_order: Sort order (relevance, pub_date, author, journal, title)
  • date_from/date_to: Date range filters
  • date_range: Predefined ranges (1y, 5y, 10y, all)
  • article_types: Filter by publication types
  • authors: Filter by author names
  • journals: Filter by journal names
  • mesh_terms: Filter by MeSH terms
  • language: Language filter (e.g., 'eng', 'fre')
  • has_abstract: Only articles with abstracts
  • has_full_text: Only articles with full text
  • humans_only: Only human studies

Citation Formats

  • bibtex: BibTeX format
  • apa: APA style
  • mla: MLA style
  • chicago: Chicago style
  • vancouver: Vancouver style
  • endnote: EndNote format
  • ris: RIS format

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

Development Guidelines

  • Follow PEP 8 style guidelines
  • Add type hints to all functions
  • Write comprehensive tests
  • Update documentation for new features
  • Use conventional commit messages

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

Acknowledgments

Changelog

See CHANGELOG.md for a detailed history of changes.


Note: This server requires a valid NCBI API key and follows NCBI's usage guidelines. Please be respectful of API rate limits and terms of service.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured