PubMed MCP Server

PubMed MCP Server

Enables searching and retrieving detailed information from PubMed articles using the NCBI Entrez API. Supports configurable search parameters including title/abstract filtering and keyword expansion to find relevant scientific publications.

Category
Visit Server

README

PubMed-MCP

A Model Context Protocol (MCP) server that provides tools for searching PubMed articles using the NCBI Entrez API.

Author: Emilio Delgado Muñoz

Features

  • Search PubMed for articles based on queries
  • Retrieve detailed information including title, authors, abstract, journal, and publication date
  • Returns results in JSON format
  • Configurable maximum number of results

Architecture

graph TB
    A[Usuario] --> B[MCP Server<br/>pubmed_search.py]
    B --> C[Función search_pubmed]
    C --> D[Entrez.esearch<br/>Búsqueda en PubMed]
    D --> E[Base de datos PubMed<br/>NCBI]
    E --> F[Lista de PMIDs]
    F --> G[Entrez.efetch<br/>Obtener detalles]
    G --> E
    G --> H[Registros XML<br/>de artículos]
    H --> I[Procesamiento de datos]
    I --> J[Extracción de:<br/>- Título<br/>- Autores<br/>- Abstract<br/>- Journal<br/>- Fecha]
    J --> K[Lista de artículos<br/>en formato JSON]
    K --> L[Respuesta al usuario]

    subgraph "Dependencias"
        M[BioPython<br/>requirements.txt]
        N[FastMCP<br/>requirements.txt]
    end

    B -.-> M
    B -.-> N

    subgraph "Configuración"
        O[Entrez.email<br/>Configurado en código]
    end

    C -.-> O

    style A fill:#e1f5fe
    style L fill:#c8e6c9
    style E fill:#fff3e0

Installation

  1. Clone this repository:

    git clone <repository-url>
    cd PubMed-MCP
    
  2. Install dependencies:

    uv sync
    
  3. Configure your email in pubmed_search.py:

    Entrez.email = 'your-email@example.com'  # Replace with your actual email
    

VS Code Configuration

To use this MCP server locally in VS Code, the project includes a pre-configured .vscode/mcp.json file. This file tells VS Code how to run the MCP server.

The configuration is already set up to use uv for running the server:

{
  "servers": {
    "pubmed-mcp": {
      "command": "uv",
      "args": ["run", "${workspaceFolder}/pubmed_search.py"]
    }
  }
}

Requirements for VS Code Integration

  • VS Code with MCP extension support
  • uv package manager installed
  • Python virtual environment set up

Alternative Configuration

If you prefer to use pip instead of uv, you can modify the .vscode/mcp.json file:

{
  "servers": {
    "pubmed-mcp": {
      "command": "python",
      "args": ["${workspaceFolder}/pubmed_search.py"]
    }
  }
}

Make sure your virtual environment is activated when using this configuration.

Requirements

  • Python 3.11+
  • BioPython
  • FastMCP

Usage

Run the MCP server:

python pubmed_search.py

The server will start and listen for MCP protocol messages on stdin/stdout.

Available Tools

search_pubmed

Searches PubMed for articles matching the given query.

Parameters:

  • query (string): The search query
  • max_results (integer, optional): Maximum number of results to return (default: 10)
  • title (bool, optional): If true (default) search in Title field
  • abstract (bool, optional): If true (default) search in Abstract field
  • keywords (bool, optional): If true (default) expand search with Author Keywords ([ot]) and MeSH Headings ([mh])

Field logic:

  • title=True and abstract=True -> query applied as (your terms)[tiab]
  • Only title=True -> (your terms)[ti]
  • Only abstract=True -> (your terms)[ab]
  • Both false -> no field tag (all fields)
  • keywords=True -> OR-expanded with (your terms)[ot] OR (your terms)[mh]

Example refined queries:

query = "breast cancer metastasis"
title=True, abstract=True, keywords=True -> (breast cancer metastasis)[tiab] OR ((breast cancer metastasis)[ot] OR (breast cancer metastasis)[mh])
title=True, abstract=False, keywords=False -> (breast cancer metastasis)[ti]
title=False, abstract=False, keywords=True -> (breast cancer metastasis) OR ((breast cancer metastasis)[ot] OR (breast cancer metastasis)[mh])

Returns: A list of article objects containing:

  • pmid: PubMed ID
  • title: Article title
  • authors: List of author names
  • abstract: Article abstract
  • journal: Journal name
  • publication_year: Year of publication
  • publication_month: Month of publication
  • url: PubMed URL

Configuration

Before using the tool, you must set your email address in the Entrez.email variable. This is required by NCBI's Entrez API.

License

This project is open source. Please check the license file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured