PubMed MCP Server
Enables searching PubMed's biomedical literature database and retrieving article metadata, abstracts, and full content through the E-utilities API. Supports advanced queries, batch operations, and multiple output formats with automatic rate limiting.
README
PubMed MCP Server
A Model Context Protocol (MCP) server that provides access to PubMed's E-utilities API for searching and downloading scientific articles. This server enables LLM applications to search PubMed's vast database of biomedical literature and retrieve article metadata, abstracts, and full content.
Features
- Article Search: Search PubMed database with flexible query terms
- Article Download: Retrieve full article metadata, abstracts, and available content
- Batch Operations: Download multiple articles in a single request
- Article Summaries: Get document summaries with metadata
- Multiple Formats: Support for XML, JSON, and text output formats
- Rate Limiting: Automatic rate limiting to respect PubMed API limits
- Error Handling: Robust error handling for API failures
Installation
Quick Setup (Recommended)
- Clone or download this repository
- Run the setup script:
This will create a virtual environment, install dependencies, and provide next steps../setup.sh
Manual Setup
- Clone or download this repository
- Create and activate virtual environment:
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate - Install dependencies:
pip install -r requirements.txt - Configure environment (optional but recommended):
cp .env.example .env # Edit .env file with your NCBI API key and email
Configuration
Environment Variables
Create a .env file with the following optional configuration:
NCBI_API_KEY: Your NCBI API key (increases rate limit from 3 to 10 requests/second)NCBI_EMAIL: Your email address (recommended by NCBI for API usage tracking)
Get your free NCBI API key at: https://www.ncbi.nlm.nih.gov/account/settings/
Usage
Running the Server
-
Activate the virtual environment (if not already active):
source venv/bin/activate # On Windows: venv\Scripts\activate -
Run the server:
python server.py
The server will start and listen for MCP connections via stdio.
- To deactivate the virtual environment when done:
deactivate
Available Tools
1. search_articles
Search PubMed for articles matching a query.
Parameters:
query(string, required): Search query (e.g., "COVID-19 vaccines", "machine learning AND healthcare")max_results(int, optional): Maximum results to return (default: 20, max: 200)sort(string, optional): Sort order - "relevance", "pub_date", or "first_author" (default: "relevance")
Returns:
pmids: List of PubMed IDstotal_count: Total number of matching articlesquery_used: The search query executedresults_returned: Number of results returnedsort_order: Sort order used
Example:
{
"query": "CRISPR gene editing",
"max_results": 10,
"sort": "pub_date"
}
2. download_article
Download article details by PubMed ID.
Parameters:
pmid(string, required): PubMed ID (e.g., "33073741")format_type(string, optional): Content format - "abstract", "medline", or "full" (default: "abstract")return_mode(string, optional): Return format - "xml", "text", or "json" (default: "xml")
Returns:
pmid: The PubMed IDcontent: Article content in requested formatformat_type: Format type usedreturn_mode: Return mode usedcontent_length: Length of content
3. download_articles_batch
Download multiple articles in a single request.
Parameters:
pmids(list, required): List of PubMed IDsformat_type(string, optional): Content format (default: "abstract")return_mode(string, optional): Return format (default: "xml")
Returns:
pmids: List of requested PMIDscontent: Combined article contentarticle_count: Number of articles requestedcontent_length: Length of content
4. get_article_summaries
Get document summaries for articles (metadata without full content).
Parameters:
pmids(list, required): List of PubMed IDs
Returns:
pmids: List of requested PMIDssummaries: XML summary dataarticle_count: Number of articles requested
Search Query Examples
Basic Searches
"COVID-19"- Search for COVID-19 articles"machine learning"- Search for machine learning articles"breast cancer"- Search for breast cancer articles
Advanced Searches
"COVID-19 AND vaccine"- Articles about COVID-19 vaccines"machine learning AND healthcare"- ML in healthcare"CRISPR[Title]"- CRISPR in article titles only"Nature[Journal]"- Articles from Nature journal"2023[PDAT]"- Articles published in 2023"Smith J[Author]"- Articles by author "Smith J"
Field-Specific Searches
[Title]- Search in title only[Author]- Search by author[Journal]- Search by journal name[PDAT]- Search by publication date[MeSH]- Search MeSH terms
Integration with Claude Desktop
Option 1: Using .env file (Recommended)
If you configured your API key in the .env file during installation:
{
"mcpServers": {
"pubmed": {
"command": "/path/to/pubmed-mcp/venv/bin/python",
"args": ["/path/to/pubmed-mcp/server.py"]
}
}
}
Option 2: Configure in Claude Desktop
Alternatively, you can specify the API key directly in the Claude Desktop configuration:
{
"mcpServers": {
"pubmed": {
"command": "/path/to/pubmed-mcp/venv/bin/python",
"args": ["/path/to/pubmed-mcp/server.py"],
"env": {
"NCBI_API_KEY": "your_api_key_here",
"NCBI_EMAIL": "your_email@example.com"
}
}
}
}
Recommendation: Use Option 1 (.env file) for better security and easier management.
Note: Make sure to use the full path to the Python executable in the virtual environment (venv/bin/python) to ensure the correct dependencies are available.
Rate Limits
- Without API key: 3 requests per second
- With API key: 10 requests per second
- Batch size limit: 50 articles per batch request
Error Handling
The server provides comprehensive error handling:
- Invalid PMIDs are automatically cleaned (non-numeric characters removed)
- Empty queries return descriptive errors
- API failures are caught and reported
- Rate limiting prevents API abuse
Development
Project Structure
pubmed-mcp/
├── server.py # Main MCP server implementation
├── pubmed_client.py # PubMed API client wrapper
├── requirements.txt # Python dependencies
├── setup.sh # Automated setup script
├── .gitignore # Git ignore file
├── README.md # This file
├── .env.example # Environment variables template
└── venv/ # Virtual environment (created by setup)
Dependencies
mcp[cli]- MCP Python SDKrequests- HTTP client for PubMed APIpython-dotenv- Environment variablestyping-extensions- Type hints support
License
This project is open source. Please check PubMed's terms of service for API usage guidelines.
Support
For issues with this MCP server, please check:
- Your API key and email configuration
- Network connectivity to NCBI servers
- Rate limiting compliance
- Valid PMID formats
For PubMed API documentation, visit: https://www.ncbi.nlm.nih.gov/books/NBK25500/
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.