
PsUtil MCP Server
Provides tools for obtaining system CPU and memory statistics through FastAPI endpoints exposed via MCP.
README
Agent with MCP Example
This project provides a simple example of an Agent and a local MCP server.
The MCP Server provides a collection of tools for obtaining system CPU and memory statistics. It is built on the psutil library. The tools are implemented as FastAPI enpoints and then exposed via MCP using fastapi-mcp.
The Agent is part of a simple Gradio chat application. The agent uses the Pydantic.ai agent framework. The agent is provided the MCP Server's URL and a system prompt indicating that it should answer system resource usage. The Gradio Chat component maintains a conversation history so that you can ask follow-up questions.
Setup
Prerequisites
First make sure you have the following tools installed on your machine:
- uv, a package and environment manager for Python
- direnv, a tool for managing environment variables in your projects
- mcptools (optional), a command line utility for interacting
with MCP servers. This program is only needed if you want to test/debug the MCP server without
the chat application. It is really helpful for debugging your tools and making sure that the
expected metadata is being published by the MCP server. Note that the name of the program is
mcpt
if you install via Homebrew on Mac andmcptools
otherwise. - These examples use OpenAI models for the Agent, so you will need an actve account and key from here. Alternatively, you can use one of the other models supported by Pydantic.ai. In that case, you will have to set the model and key appropriately.
Setup steps
Once you have the prerequisites installed, do the following steps:
- Copy envrc.template to .envrc and edit the value of OPENAI_API_KEY to your Open AI token.
- Run
direnv allow
to put the changed environment variables into your environment. - Run
uv sync
to create/update your virtual environment. - You can start the MCP Server with
uv run psutil_mcp.py
. By default it will server on port 8000.
Testing
If you have installed mcptools, you can connect to your MCP server and test it as follows:
$ mcptools shell http://localhost:8000/mcp # use the command "mcpt" if you installed via Homebrew
mcp> tools
cpu_times
Get Cpu Times Return system CPU time as a total across all cpus. Every attribute represents the
...
mcp> call cpu_times
{
"user": 119528.44,
"nice": 0.0,
"system": 67114.2,
"idle": 2692773.55
}
mcp> exit
Running
To run the full application:
- If you have not already stared your MCP Server, you can run it as
uv run psutil_mcp.py
- In another terminal window, start the chat server with
uv run chat.py
- Point your browser to http://127.0.0.1:7860
Extras
The psutil_mcp.py and chat.py programs have some command line options to enable debugging, change the
model, change the ports, etc. Run them with the --help
option to see the available options.
There is a configuration for VSCode to use the MCP server at .vscode/mcp.json
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.