Prometheus MCP Server
Enables AI assistants to query Prometheus metrics, monitor alerts, and analyze system health through read-only access to your Prometheus server with built-in query safety and optional AI-powered metric analysis.
README
prometheus-mcp
A Model Context Protocol (MCP) server for Prometheus integration. Give your AI assistant eyes on your metrics and alerts.
Status: Planning Author: Claude (claude@arktechnwa.com) + Meldrey License: MIT Organization: ArktechNWA
Why?
Your AI assistant can analyze code, but it can't see if your services are healthy. It can suggest optimizations, but can't see the actual latency metrics. It's blind to the alerts firing at 3am.
prometheus-mcp connects Claude to your Prometheus server — read-only, safe, insightful.
Philosophy
- Read-only by design — Prometheus queries don't mutate state
- Query safety — Timeout expensive queries, limit cardinality
- Never hang — PromQL can be expensive, always timeout
- Structured output — Metrics + human summaries
- Fallback AI — Haiku for anomaly detection and query help
Features
Perception (Read)
- Instant queries (current values)
- Range queries (over time)
- Alert status and history
- Target health
- Recording rules and alerts
- Label discovery
- Metric metadata
Analysis (AI-Assisted)
- "Is this metric normal?"
- "What caused this spike?"
- "Suggest a query for X"
- Anomaly detection
Permission Model
Prometheus is inherently read-only for queries. Permissions focus on:
| Level | Description | Default |
|---|---|---|
query |
Run PromQL queries | ON |
alerts |
View alert status | ON |
admin |
View config, reload rules | OFF |
Query Safety
{
"query_limits": {
"max_duration": "30s",
"max_resolution": "10000",
"max_series": 1000,
"blocked_metrics": [
"__.*",
"secret_.*"
]
}
}
Safety features:
- Query timeout enforcement
- Cardinality limits
- Metric blacklist patterns
- Rate limiting
Authentication
{
"prometheus": {
"url": "http://localhost:9090",
"auth": {
"type": "none" | "basic" | "bearer",
"username_env": "PROM_USER",
"password_env": "PROM_PASS",
"token_env": "PROM_TOKEN"
}
}
}
Tools
Queries
prom_query
Execute instant query (current values).
prom_query({
query: string, // PromQL expression
time?: string // evaluation time (default: now)
})
Returns:
{
"query": "up{job=\"api\"}",
"result_type": "vector",
"results": [
{
"metric": {"job": "api", "instance": "api-1:8080"},
"value": 1,
"timestamp": "2025-12-29T10:30:00Z"
}
],
"summary": "3 of 3 api instances are up"
}
prom_query_range
Execute range query (over time).
prom_query_range({
query: string,
start: string, // ISO timestamp or relative: "-1h"
end?: string, // default: now
step?: string // resolution: "15s", "1m", "5m"
})
Returns:
{
"query": "rate(http_requests_total[5m])",
"result_type": "matrix",
"results": [
{
"metric": {"handler": "/api/users"},
"values": [[1735470600, "123.45"], ...],
"stats": {
"min": 100.2,
"max": 456.7,
"avg": 234.5,
"current": 345.6
}
}
],
"summary": "Request rate ranged from 100-457 req/s over the last hour, currently 346 req/s"
}
prom_series
Find series matching label selectors.
prom_series({
match: string[], // label matchers
start?: string,
end?: string,
limit?: number
})
prom_labels
Get label names or values.
prom_labels({
label?: string, // get values for this label (omit for label names)
match?: string[], // filter by series
limit?: number
})
Alerts
prom_alerts
Get current alert status.
prom_alerts({
state?: "firing" | "pending" | "inactive",
filter?: string // alert name pattern
})
Returns:
{
"alerts": [
{
"name": "HighErrorRate",
"state": "firing",
"severity": "critical",
"summary": "Error rate > 5% for api service",
"started_at": "2025-12-29T10:15:00Z",
"duration": "15m",
"labels": {"job": "api", "severity": "critical"},
"annotations": {"summary": "..."}
}
],
"summary": "1 critical, 0 warning alerts firing"
}
prom_rules
Get alerting and recording rules.
prom_rules({
type?: "alert" | "record",
filter?: string
})
Targets
prom_targets
Get scrape target health.
prom_targets({
state?: "active" | "dropped",
job?: string
})
Returns:
{
"targets": [
{
"job": "api",
"instance": "api-1:8080",
"health": "up",
"last_scrape": "2025-12-29T10:29:45Z",
"scrape_duration": "0.023s",
"error": null
}
],
"summary": "12 of 12 targets healthy"
}
Discovery
prom_metadata
Get metric metadata (help, type, unit).
prom_metadata({
metric?: string, // specific metric (omit for all)
limit?: number
})
Analysis
prom_analyze
AI-powered metric analysis.
prom_analyze({
query: string,
question?: string, // "Is this normal?", "What caused the spike?"
use_ai?: boolean
})
Returns:
{
"query": "rate(http_errors_total[5m])",
"data_summary": {
"current": 12.3,
"1h_ago": 2.1,
"change": "+486%"
},
"synthesis": {
"analysis": "Error rate spiked 5x in the last hour. The spike correlates with deployment at 10:15. Errors are concentrated on /api/checkout endpoint.",
"suggested_queries": [
"rate(http_errors_total{handler=\"/api/checkout\"}[5m])",
"histogram_quantile(0.99, rate(http_request_duration_seconds_bucket[5m]))"
],
"confidence": "high"
}
}
prom_suggest_query
Get PromQL query suggestions.
prom_suggest_query({
intent: string // "show me api latency p99"
})
NEVERHANG Architecture
PromQL queries can be expensive. High-cardinality queries can OOM Prometheus.
Query Timeouts
- Default: 30s
- Configurable per-query
- Server-side timeout parameter
Cardinality Protection
- Limit series returned
- Block known expensive patterns
- Warn on high-cardinality queries
Circuit Breaker
- 3 timeouts in 60s → 5 minute cooldown
- Tracks Prometheus health
- Graceful degradation
{
"neverhang": {
"query_timeout": 30000,
"max_series": 1000,
"circuit_breaker": {
"failures": 3,
"window": 60000,
"cooldown": 300000
}
}
}
Fallback AI
Optional Haiku for metric analysis.
{
"fallback": {
"enabled": true,
"model": "claude-haiku-4-5",
"api_key_env": "PROM_MCP_FALLBACK_KEY",
"max_tokens": 500
}
}
When used:
prom_analyzewith questionsprom_suggest_queryfor natural language- Anomaly detection
Configuration
~/.config/prometheus-mcp/config.json:
{
"prometheus": {
"url": "http://localhost:9090",
"auth": {
"type": "none"
}
},
"permissions": {
"query": true,
"alerts": true,
"admin": false
},
"query_limits": {
"max_duration": "30s",
"max_series": 1000
},
"fallback": {
"enabled": false
}
}
Claude Code Integration
{
"mcpServers": {
"prometheus": {
"command": "prometheus-mcp",
"args": ["--config", "/path/to/config.json"]
}
}
}
Installation
npm install -g @arktechnwa/prometheus-mcp
Requirements
- Node.js 18+
- Prometheus server (2.x+)
- Optional: Anthropic API key for fallback AI
Credits
Created by Claude (claude@arktechnwa.com) in collaboration with Meldrey. Part of the ArktechNWA MCP Toolshed.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.