Presearch MCP Server
Enables privacy-focused web searches through the Presearch API and web content scraping. Supports multi-language search, configurable safe search, result caching, and multiple export formats (JSON, CSV, Markdown).
README
Presearch MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with the Presearch API, enabling privacy-focused search capabilities and web scraping functionality for AI assistants.
Features
- 🔍 Privacy-focused search through Presearch API
- 🌐 Web content scraping with intelligent extraction
- 🔌 MCP Protocol compliance for seamless AI assistant integration
- 📊 Search result caching for improved performance
- 🛡️ Configurable safe search options
- 🗂️ Multiple export formats (JSON, CSV, Markdown)
- 🌍 Multi-language support for search and UI
- 📈 Performance insights and analytics
Installation
npm install presearch-mcp-server
Quick Start
- Clone the repository:
git clone https://github.com/NosytLabs/presearch-search-api-mcp.git
cd presearch-search-api-mcp
- Install dependencies:
npm install
- Copy and configure the environment variables:
cp .env.example .env
# Edit .env with your Presearch API key and other settings
- Start the server:
npm start
MCP Configuration
To use this server with an MCP client, add the following to your MCP client configuration:
{
"mcpServers": {
"presearch": {
"command": "node",
"args": ["path/to/presearch-mcp-server/src/server/server.js"]
}
}
}
Available Tools
Search Tools
search
Perform a search query using the Presearch API.
Parameters:
query(string, required): Search queryip(string, required): IP address of the usercount(number, optional): Number of results (1-20, default 10)offset(number, optional): Pagination offset (default 0)country(string, optional): Country code (e.g., US, GB)search_lang(string, optional): Search language (e.g., en, es)ui_lang(string, optional): UI language (e.g., en-US)safesearch(string, optional): Safe search level (off, moderate, strict)freshness(string, optional): Time filter (pd, pw, pm, py)useCache(boolean, optional): Whether to use cached results
Example:
{
"query": "Model Context Protocol",
"ip": "192.168.1.1",
"count": 5,
"search_lang": "en",
"safesearch": "moderate"
}
export_results
Export search results in different formats.
Parameters:
query(string, required): Search query to exportip(string, required): IP address of the userformat(string, required): Export format (json, csv, markdown)count(number, optional): Number of results to exportcountry(string, optional): Country code for search
Web Scraping Tools
scrape_content
Extract content from a web page.
Parameters:
url(string, required): URL to scrape content fromextractText(boolean, optional): Extract text contentextractLinks(boolean, optional): Extract linksextractImages(boolean, optional): Extract imagesincludeMetadata(boolean, optional): Include page metadata
Cache Management Tools
cache_stats
Get statistics about the search result cache.
cache_clear
Clear the search result cache.
health_check
Check the health status of the MCP server.
Usage Examples
Basic Search
const searchResults = await client.call("search", {
"query": "artificial intelligence",
"ip": "192.168.1.1",
"count": 10,
"search_lang": "en"
});
Web Scraping
const pageContent = await client.call("scrape_content", {
"url": "https://example.com",
"extractText": true,
"extractLinks": true,
"includeMetadata": true
});
Export to CSV
const csvExport = await client.call("export_results", {
"query": "machine learning",
"ip": "192.168.1.1",
"format": "csv",
"count": 50
});
Configuration
The server can be configured using environment variables or a configuration file:
Environment Variables
PRESEARCH_API_KEY: Your Presearch API key (required)SERVER_HOST: Host address for the MCP server (default: localhost)SERVER_PORT: Port for the MCP server (default: 3000)CACHE_SIZE: Maximum number of cached results (default: 100)CACHE_TTL: Cache time-to-live in seconds (default: 3600)LOG_LEVEL: Logging level (error, warn, info, debug)
Configuration File
Create a config/config.json file with the following structure:
{
"presearch": {
"apiKey": "your-api-key",
"defaultCountry": "US",
"defaultLanguage": "en",
"safeSearch": "moderate"
},
"server": {
"host": "localhost",
"port": 3000
},
"cache": {
"enabled": true,
"maxSize": 100,
"ttl": 3600
},
"logging": {
"level": "info"
}
}
Testing
Run the test suite:
# Run basic tests
npm test
# Run MCP protocol tests
npm run test:mcp
# Run all tests
npm run test:all
Development
- Fork the repository
- Create a feature branch:
git checkout -b feature-name - Make your changes and commit them:
git commit -m 'Add some feature' - Push to the branch:
git push origin feature-name - Submit a pull request
API Reference
For detailed API documentation, see the API Reference.
Contributing
We welcome contributions! Please see our Contributing Guide for details.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
Related Projects
#presearch #mcp
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.