PostgreSQL MCP Server
Provides read-only access to PostgreSQL databases with schema inspection, query execution in multiple formats (JSON, CSV, Markdown), and query history tracking with built-in security features.
README
PostgreSQL MCP Server
A Model Context Protocol (MCP) server that provides read-only access to PostgreSQL databases. Execute SELECT queries, inspect database schema, and track query history with built-in safety features.
Features
- Read-Only Query Execution: Execute SELECT queries with automatic read-only transaction enforcement
- Multiple Output Formats: Results in JSON, CSV, or Markdown table format
- Schema Inspection: List tables, describe table structures, view indexes, and explore schemas
- Query History: Track recently executed queries with execution time and metadata
- Connection Pooling: Efficient connection management with configurable pool sizes
- Security: Query validation, SQL injection prevention, and read-only transaction guarantees
- Database Statistics: View database size, table counts, and connection information
Installation
- Clone this repository:
git clone <repository-url>
cd postgres-mcp
- Install dependencies using
uv:
uv sync
Configuration
Environment Variables
Create a .env file in the project root (use .env.example as a template):
# Required: PostgreSQL Connection Parameters
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
POSTGRES_DATABASE=myapp
POSTGRES_USER=readonly_user
POSTGRES_PASSWORD=secure_password
# Optional: Connection Pool Configuration
POSTGRES_POOL_MIN_SIZE=2 # Default: 2
POSTGRES_POOL_MAX_SIZE=10 # Default: 10
POSTGRES_COMMAND_TIMEOUT=60 # Default: 60 seconds
POSTGRES_CONNECTION_TIMEOUT=10 # Default: 10 seconds
# Optional: Query History Configuration
QUERY_HISTORY_SIZE=100 # Default: 100
# Optional: Logging Configuration
LOG_LEVEL=INFO # Default: INFO (DEBUG, INFO, WARNING, ERROR)
Database User Setup
For security, create a dedicated read-only PostgreSQL user:
-- Create read-only user
CREATE USER readonly_user WITH PASSWORD 'secure_password';
-- Grant connect permission
GRANT CONNECT ON DATABASE myapp TO readonly_user;
-- Grant schema usage
GRANT USAGE ON SCHEMA public TO readonly_user;
-- Grant select on all tables
GRANT SELECT ON ALL TABLES IN SCHEMA public TO readonly_user;
-- Grant select on future tables
ALTER DEFAULT PRIVILEGES IN SCHEMA public
GRANT SELECT ON TABLES TO readonly_user;
Usage
Running the Server
uv run python main.py
The server communicates via stdio and can be integrated with MCP clients like Claude Desktop.
Integrating with Claude Desktop
Add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"postgres": {
"command": "python",
"args": ["/path/to/postgres-mcp/main.py"],
"env": {
"POSTGRES_HOST": "localhost",
"POSTGRES_PORT": "5432",
"POSTGRES_DATABASE": "myapp",
"POSTGRES_USER": "readonly_user",
"POSTGRES_PASSWORD": "secure_password"
}
}
}
}
Alternatively, if using uv:
{
"mcpServers": {
"postgres": {
"command": "uv",
"args": [
"run",
"--directory",
"/path-to-postgres-mcp/postgres-mcp",
"python",
"main.py"
]
}
}
Available Tools
1. query_database
Execute SELECT queries on the database with formatted output.
Input:
{
"query": "SELECT * FROM users LIMIT 10",
"format": "json",
"timeout": 30
}
Parameters:
query(required): SQL SELECT query to executeformat(optional): Output format -json(default),csv, ormarkdowntimeout(optional): Query timeout in seconds (max 300)
Output:
{
"rows": [...],
"row_count": 10,
"columns": ["id", "name", "email"],
"execution_time_ms": 45.32,
"format": "json",
"formatted_output": "..."
}
2. list_tables
List all tables in the database with metadata.
Input:
{
"schema": "public"
}
Parameters:
schema(optional): Filter tables by schema name
Output:
{
"tables": [
{
"schema": "public",
"name": "users",
"row_count_estimate": 1500,
"size": "128 KB"
}
]
}
3. describe_table
Get detailed table structure including columns, types, indexes, and constraints.
Input:
{
"table_name": "users",
"schema": "public"
}
Parameters:
table_name(required): Name of the tableschema(optional): Schema name (default:public)
Output:
{
"schema": "public",
"table": "users",
"columns": [
{
"name": "id",
"type": "integer",
"nullable": false,
"default": "nextval('users_id_seq')",
"primary_key": true
}
],
"indexes": [...],
"foreign_keys": [...]
}
4. list_schemas
List all schemas in the database.
Input:
{}
Output:
{
"schemas": ["public", "auth", "analytics"]
}
5. get_table_indexes
Get all indexes for a specific table.
Input:
{
"table_name": "users",
"schema": "public"
}
Parameters:
table_name(required): Name of the tableschema(optional): Schema name (default:public)
Output:
{
"indexes": [
{
"name": "users_pkey",
"type": "btree",
"columns": ["id"],
"unique": true,
"primary": true
}
]
}
6. get_query_history
Retrieve recent query history with execution metadata.
Input:
{
"limit": 20
}
Parameters:
limit(optional): Maximum queries to return (default: 20, max: 100)
Output:
{
"queries": [
{
"query": "SELECT * FROM users",
"timestamp": "2025-12-04T10:30:00Z",
"execution_time_ms": 45.32,
"row_count": 10,
"format": "json",
"success": true,
"error": null
}
]
}
7. get_database_stats
Get overall database statistics and metadata.
Input:
{}
Output:
{
"database_name": "myapp",
"size": "45 MB",
"table_count": 12,
"connection_count": 5,
"version": "PostgreSQL 15.3"
}
Security Features
Read-Only Enforcement
All queries are executed within read-only transactions:
async with conn.transaction(readonly=True):
result = await conn.fetch(query)
Query Validation
Queries are validated before execution to prevent:
- INSERT, UPDATE, DELETE operations
- DROP, CREATE, ALTER operations
- TRUNCATE, GRANT, REVOKE operations
- Other write/admin operations
SQL Injection Prevention
- Input sanitization for table and schema identifiers
- Parameterized queries where applicable
- Regex-based validation of identifiers
Architecture
Components
config.py: Environment configuration and validationdatabase.py: Connection pool management and read-only query executionvalidators.py: Query validation and sanitizationformatters.py: Result formatting (JSON, CSV, Markdown)history.py: Thread-safe query history trackingtools.py: MCP tool implementationsserver.py: MCP server setup and lifecycle managementtypes.py: Pydantic models for type safety
Connection Pooling
- Min Size: 2 warm connections
- Max Size: 10 concurrent connections
- Timeout: 60 seconds command timeout, 10 seconds connection timeout
- Idle Lifetime: Automatic cleanup of inactive connections
Troubleshooting
Connection Errors
Error: "Database authentication failed"
- Verify
POSTGRES_USERandPOSTGRES_PASSWORDare correct - Check if the user exists in PostgreSQL
- Ensure the user has CONNECT permission
Error: "Database 'myapp' not found"
- Verify
POSTGRES_DATABASEmatches an existing database - Check database name spelling
Error: "Connection refused"
- Verify PostgreSQL is running on the specified host and port
- Check firewall settings
- Verify
POSTGRES_HOSTandPOSTGRES_PORTare correct
Query Errors
Error: "Query contains forbidden keyword: INSERT"
- This server only allows SELECT queries
- Use a different tool for write operations
Error: "Table does not exist"
- Verify table name and schema are correct
- Use
list_tablesto see available tables - Check if user has SELECT permission on the table
Error: "Query execution timeout"
- Query took longer than the specified timeout
- Optimize the query or increase timeout parameter
- Check for missing indexes on large tables
Permission Errors
Error: "permission denied for table X"
- The database user lacks SELECT permission
- Grant appropriate permissions (see Database User Setup)
Development
Running Tests
# Add your test commands here
pytest
Project Structure
postgres-mcp/
--- .env # Configuration (not in git)
--- .env.example # Configuration template
--- .gitignore
--- README.md
--- pyproject.toml
--- main.py # Entry point
--- src/
--- postgres_mcp/
--- __init__.py
--- config.py # Configuration
--- database.py # Connection pool
--- formatters.py # Output formatting
--- history.py # Query history
--- server.py # MCP server
--- tools.py # MCP tools
--- types.py # Pydantic models
--- validators.py # Query validation
License
[Add your license here]
Contributing
[Add contribution guidelines here]
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases