PostgreSQL MCP Server

PostgreSQL MCP Server

Provides read-only access to PostgreSQL databases with schema inspection, query execution in multiple formats (JSON, CSV, Markdown), and query history tracking with built-in security features.

Category
Visit Server

README

PostgreSQL MCP Server

A Model Context Protocol (MCP) server that provides read-only access to PostgreSQL databases. Execute SELECT queries, inspect database schema, and track query history with built-in safety features.

Features

  • Read-Only Query Execution: Execute SELECT queries with automatic read-only transaction enforcement
  • Multiple Output Formats: Results in JSON, CSV, or Markdown table format
  • Schema Inspection: List tables, describe table structures, view indexes, and explore schemas
  • Query History: Track recently executed queries with execution time and metadata
  • Connection Pooling: Efficient connection management with configurable pool sizes
  • Security: Query validation, SQL injection prevention, and read-only transaction guarantees
  • Database Statistics: View database size, table counts, and connection information

Installation

  1. Clone this repository:
git clone <repository-url>
cd postgres-mcp
  1. Install dependencies using uv:
uv sync

Configuration

Environment Variables

Create a .env file in the project root (use .env.example as a template):

# Required: PostgreSQL Connection Parameters
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
POSTGRES_DATABASE=myapp
POSTGRES_USER=readonly_user
POSTGRES_PASSWORD=secure_password

# Optional: Connection Pool Configuration
POSTGRES_POOL_MIN_SIZE=2          # Default: 2
POSTGRES_POOL_MAX_SIZE=10         # Default: 10
POSTGRES_COMMAND_TIMEOUT=60       # Default: 60 seconds
POSTGRES_CONNECTION_TIMEOUT=10    # Default: 10 seconds

# Optional: Query History Configuration
QUERY_HISTORY_SIZE=100            # Default: 100

# Optional: Logging Configuration
LOG_LEVEL=INFO                    # Default: INFO (DEBUG, INFO, WARNING, ERROR)

Database User Setup

For security, create a dedicated read-only PostgreSQL user:

-- Create read-only user
CREATE USER readonly_user WITH PASSWORD 'secure_password';

-- Grant connect permission
GRANT CONNECT ON DATABASE myapp TO readonly_user;

-- Grant schema usage
GRANT USAGE ON SCHEMA public TO readonly_user;

-- Grant select on all tables
GRANT SELECT ON ALL TABLES IN SCHEMA public TO readonly_user;

-- Grant select on future tables
ALTER DEFAULT PRIVILEGES IN SCHEMA public
    GRANT SELECT ON TABLES TO readonly_user;

Usage

Running the Server

uv run python main.py

The server communicates via stdio and can be integrated with MCP clients like Claude Desktop.

Integrating with Claude Desktop

Add this configuration to your Claude Desktop config file:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "postgres": {
      "command": "python",
      "args": ["/path/to/postgres-mcp/main.py"],
      "env": {
        "POSTGRES_HOST": "localhost",
        "POSTGRES_PORT": "5432",
        "POSTGRES_DATABASE": "myapp",
        "POSTGRES_USER": "readonly_user",
        "POSTGRES_PASSWORD": "secure_password"
      }
    }
  }
}

Alternatively, if using uv:

{
  "mcpServers": {
    "postgres": {
      "command": "uv",
      "args": [
        "run",
        "--directory",
        "/path-to-postgres-mcp/postgres-mcp",
        "python",
        "main.py"
      ]
    }
}

Available Tools

1. query_database

Execute SELECT queries on the database with formatted output.

Input:

{
  "query": "SELECT * FROM users LIMIT 10",
  "format": "json",
  "timeout": 30
}

Parameters:

  • query (required): SQL SELECT query to execute
  • format (optional): Output format - json (default), csv, or markdown
  • timeout (optional): Query timeout in seconds (max 300)

Output:

{
  "rows": [...],
  "row_count": 10,
  "columns": ["id", "name", "email"],
  "execution_time_ms": 45.32,
  "format": "json",
  "formatted_output": "..."
}

2. list_tables

List all tables in the database with metadata.

Input:

{
  "schema": "public"
}

Parameters:

  • schema (optional): Filter tables by schema name

Output:

{
  "tables": [
    {
      "schema": "public",
      "name": "users",
      "row_count_estimate": 1500,
      "size": "128 KB"
    }
  ]
}

3. describe_table

Get detailed table structure including columns, types, indexes, and constraints.

Input:

{
  "table_name": "users",
  "schema": "public"
}

Parameters:

  • table_name (required): Name of the table
  • schema (optional): Schema name (default: public)

Output:

{
  "schema": "public",
  "table": "users",
  "columns": [
    {
      "name": "id",
      "type": "integer",
      "nullable": false,
      "default": "nextval('users_id_seq')",
      "primary_key": true
    }
  ],
  "indexes": [...],
  "foreign_keys": [...]
}

4. list_schemas

List all schemas in the database.

Input:

{}

Output:

{
  "schemas": ["public", "auth", "analytics"]
}

5. get_table_indexes

Get all indexes for a specific table.

Input:

{
  "table_name": "users",
  "schema": "public"
}

Parameters:

  • table_name (required): Name of the table
  • schema (optional): Schema name (default: public)

Output:

{
  "indexes": [
    {
      "name": "users_pkey",
      "type": "btree",
      "columns": ["id"],
      "unique": true,
      "primary": true
    }
  ]
}

6. get_query_history

Retrieve recent query history with execution metadata.

Input:

{
  "limit": 20
}

Parameters:

  • limit (optional): Maximum queries to return (default: 20, max: 100)

Output:

{
  "queries": [
    {
      "query": "SELECT * FROM users",
      "timestamp": "2025-12-04T10:30:00Z",
      "execution_time_ms": 45.32,
      "row_count": 10,
      "format": "json",
      "success": true,
      "error": null
    }
  ]
}

7. get_database_stats

Get overall database statistics and metadata.

Input:

{}

Output:

{
  "database_name": "myapp",
  "size": "45 MB",
  "table_count": 12,
  "connection_count": 5,
  "version": "PostgreSQL 15.3"
}

Security Features

Read-Only Enforcement

All queries are executed within read-only transactions:

async with conn.transaction(readonly=True):
    result = await conn.fetch(query)

Query Validation

Queries are validated before execution to prevent:

  • INSERT, UPDATE, DELETE operations
  • DROP, CREATE, ALTER operations
  • TRUNCATE, GRANT, REVOKE operations
  • Other write/admin operations

SQL Injection Prevention

  • Input sanitization for table and schema identifiers
  • Parameterized queries where applicable
  • Regex-based validation of identifiers

Architecture

Components

  • config.py: Environment configuration and validation
  • database.py: Connection pool management and read-only query execution
  • validators.py: Query validation and sanitization
  • formatters.py: Result formatting (JSON, CSV, Markdown)
  • history.py: Thread-safe query history tracking
  • tools.py: MCP tool implementations
  • server.py: MCP server setup and lifecycle management
  • types.py: Pydantic models for type safety

Connection Pooling

  • Min Size: 2 warm connections
  • Max Size: 10 concurrent connections
  • Timeout: 60 seconds command timeout, 10 seconds connection timeout
  • Idle Lifetime: Automatic cleanup of inactive connections

Troubleshooting

Connection Errors

Error: "Database authentication failed"

  • Verify POSTGRES_USER and POSTGRES_PASSWORD are correct
  • Check if the user exists in PostgreSQL
  • Ensure the user has CONNECT permission

Error: "Database 'myapp' not found"

  • Verify POSTGRES_DATABASE matches an existing database
  • Check database name spelling

Error: "Connection refused"

  • Verify PostgreSQL is running on the specified host and port
  • Check firewall settings
  • Verify POSTGRES_HOST and POSTGRES_PORT are correct

Query Errors

Error: "Query contains forbidden keyword: INSERT"

  • This server only allows SELECT queries
  • Use a different tool for write operations

Error: "Table does not exist"

  • Verify table name and schema are correct
  • Use list_tables to see available tables
  • Check if user has SELECT permission on the table

Error: "Query execution timeout"

  • Query took longer than the specified timeout
  • Optimize the query or increase timeout parameter
  • Check for missing indexes on large tables

Permission Errors

Error: "permission denied for table X"

  • The database user lacks SELECT permission
  • Grant appropriate permissions (see Database User Setup)

Development

Running Tests

# Add your test commands here
pytest

Project Structure

postgres-mcp/
--- .env                    # Configuration (not in git)
--- .env.example            # Configuration template
--- .gitignore
--- README.md
--- pyproject.toml
--- main.py                 # Entry point
--- src/
    --- postgres_mcp/
        --- __init__.py
        --- config.py       # Configuration
        --- database.py     # Connection pool
        --- formatters.py   # Output formatting
        --- history.py      # Query history
        --- server.py       # MCP server
        --- tools.py        # MCP tools
        --- types.py        # Pydantic models
        --- validators.py   # Query validation

License

[Add your license here]

Contributing

[Add contribution guidelines here]

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured