portfolio-mcp

portfolio-mcp

A portfolio analysis MCP server that enables AI agents to manage investment portfolios, fetch financial data from Yahoo Finance and CoinGecko, and perform advanced analysis like weight optimization and Monte Carlo simulations. It utilizes reference-based caching to efficiently handle large datasets without bloating the LLM's context window.

Category
Visit Server

README

portfolio-mcp

A portfolio analysis MCP server powered by mcp-refcache for building AI agent tools that handle financial data efficiently.

Tests Coverage Python

Features

  • Portfolio Management: Create, read, update, delete portfolios with persistent storage
  • Data Sources: Yahoo Finance (stocks/ETFs), CoinGecko (crypto), Synthetic (GBM simulation)
  • Analysis Tools: Returns, volatility, Sharpe ratio, Sortino ratio, VaR, drawdowns, correlations
  • Optimization: Efficient Frontier, Monte Carlo simulation, weight optimization
  • Reference-Based Caching: Large datasets cached via mcp-refcache to avoid context bloat

Installation

Using uv (recommended)

# Clone the repository
git clone https://github.com/l4b4r4b4b4/portfolio-mcp
cd portfolio-mcp

# Install dependencies
uv sync

# Run the server
uv run portfolio-mcp stdio

Using pip

pip install portfolio-mcp
portfolio-mcp stdio

Quick Start

Connect to Claude Desktop

Add to your Claude Desktop configuration (~/.config/claude/claude_desktop_config.json):

{
  "mcpServers": {
    "portfolio-mcp": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/portfolio-mcp", "portfolio-mcp", "stdio"]
    }
  }
}

Basic Usage

Once connected, you can use natural language to:

"Create a portfolio called 'tech_stocks' with AAPL, GOOG, and MSFT"
"Analyze the returns and volatility of my tech_stocks portfolio"
"Optimize my portfolio for maximum Sharpe ratio"
"Show me the efficient frontier with 20 points"
"Compare my portfolios by Sharpe ratio"

Available Tools

Portfolio Management (6 tools)

  • create_portfolio - Create a new portfolio with symbols and weights
  • get_portfolio - Retrieve portfolio details and metrics
  • list_portfolios - List all stored portfolios
  • delete_portfolio - Remove a portfolio
  • update_portfolio_weights - Modify portfolio weights
  • clone_portfolio - Create a copy with optional new weights

Analysis Tools (8 tools)

  • get_portfolio_metrics - Comprehensive metrics (return, volatility, Sharpe, Sortino, VaR)
  • get_returns - Daily, log, or cumulative returns
  • get_correlation_matrix - Asset correlation analysis
  • get_covariance_matrix - Variance-covariance structure
  • get_individual_stock_metrics - Per-asset statistics
  • get_drawdown_analysis - Maximum drawdown and recovery analysis
  • compare_portfolios - Side-by-side portfolio comparison

Optimization Tools (4 tools)

  • optimize_portfolio - Optimize weights (max Sharpe, min volatility, target return/vol)
  • get_efficient_frontier - Generate efficient frontier curve
  • run_monte_carlo - Monte Carlo simulation for portfolio analysis
  • apply_optimization - Apply optimization and update stored portfolio

Data Tools (8 tools)

  • generate_price_series - Generate synthetic GBM price data
  • generate_portfolio_scenarios - Create multiple scenario datasets
  • get_sample_portfolio_data - Get sample data for testing
  • get_trending_coins - Trending cryptocurrencies from CoinGecko
  • search_crypto_coins - Search for crypto assets
  • get_crypto_info - Detailed cryptocurrency information
  • list_crypto_symbols - Available crypto symbol mappings
  • get_cached_result - Retrieve cached large results by reference ID

Architecture

portfolio-mcp/
├── app/
│   ├── __init__.py
│   ├── __main__.py      # Typer CLI entry point
│   ├── config.py        # Pydantic settings
│   ├── server.py        # FastMCP server setup
│   ├── storage.py       # RefCache-based portfolio storage
│   ├── models.py        # Pydantic models for I/O
│   ├── data_sources.py  # Yahoo Finance + CoinGecko APIs
│   └── tools/           # MCP tool implementations
│       ├── portfolio.py
│       ├── analysis.py
│       ├── optimization.py
│       └── data.py
└── tests/               # 163 tests, 81% coverage

Reference-Based Caching

This server uses mcp-refcache to handle large results efficiently:

  1. Large results are cached - When a tool returns data that exceeds the preview size, it's stored in the cache
  2. References are returned - The tool returns a ref_id and a preview/sample of the data
  3. Full data on demand - Use get_cached_result(ref_id=...) to retrieve the complete data

This prevents context window bloat when working with large datasets like price histories or Monte Carlo simulations.

Development

Prerequisites

  • Python 3.12+
  • uv (recommended) or pip

Setup

# Clone and install
git clone https://github.com/l4b4r4b4b4/portfolio-mcp
cd portfolio-mcp
uv sync

# Run tests
uv run pytest --cov

# Lint and format
uv run ruff check .
uv run ruff format .

Running Locally

# stdio mode (for MCP clients)
uv run portfolio-mcp stdio

# SSE mode (for web clients)
uv run portfolio-mcp sse --port 8080

# Streamable HTTP mode
uv run portfolio-mcp streamable-http --port 8080

Configuration

Environment variables:

Variable Description Default
LOG_LEVEL Logging level INFO
CACHE_TTL Default cache TTL in seconds 3600

License

MIT License - see LICENSE for details.

Related Projects

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured