Pocket Assistant MCP Server

Pocket Assistant MCP Server

Enables AI assistants to save, retrieve, and manage research content using ChromaDB vector storage with semantic search, topic organization, and automatic deduplication powered by OpenAI embeddings.

Category
Visit Server

README

Pocket Assistant MCP Server

A Model Context Protocol (MCP) server that provides pocket assistance capabilities with ChromaDB vector storage. This server enables AI assistants to save, retrieve, and manage research content efficiently using vector embeddings.

Features

  • Vector Storage: Uses ChromaDB for efficient storage and retrieval
  • Topic Organization: Organize research content by topics
  • Deduplication: Automatic content deduplication using hashing
  • Semantic Search: Query research content using natural language
  • Multiple Topics: Manage multiple research topics simultaneously
  • OpenAI Embeddings: Uses OpenAI's text-embedding-3-small model

Installation

Using uvx (Recommended)

uvx pocket-agent-mcp

Using uv

uv pip install pocket-agent-mcp

Using pip

pip install pocket-agent-mcp

From Source

git clone https://github.com/VikashS/pocket_agent_mcp.git
cd pocket-agent-mcp
uv pip install -e .

Configuration

Environment Variables

Required:

  • OPENAI_API_KEY - Your OpenAI API key for embeddings
  • RESEARCH_DB_PATH - Base path for storing research databases
    • A pocket_chroma_dbs directory will be created inside this path
    • Example: /path/to/data (will create /path/to/data/pocket_chroma_dbs)
    • Example: ~/.pocket-agent-mcp (will create ~/.pocket-agent-mcp/pocket_chroma_dbs)

Create a .env file with your configuration:

OPENAI_API_KEY=your-api-key-here
RESEARCH_DB_PATH=/path/to/data

Claude Desktop Configuration

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "research-assistant": {
      "command": "uvx",
      "args": ["pocket-agent-mcp"],
      "env": {
        "OPENAI_API_KEY": "your-api-key-here",
        "POCKET_DB_PATH": "/path/to/data"
      }
    }
  }
}

Note: Both OPENAI_API_KEY and POCKET_DB_PATH are required. The database will be stored in POCKET_DB_PATH/pocket_chroma_dbs/.

Available Tools

1. save_research_data

Save research content to vector database for future retrieval.

Parameters:

  • content (List[str]): List of text content to save
  • topic (str): Topic name for organizing the data (creates separate DB)

Example:

Save these research findings about AI to the "artificial-intelligence" topic

2. query_research_data

Query saved research content using natural language.

Parameters:

  • query (str): Natural language query
  • topic (str): Topic to search in (default: "default")
  • k (int): Number of results to return (default: 5)

Example:

Query the "artificial-intelligence" topic for information about transformers

3. list_topics

List all available research topics and their document counts.

Example:

List all available research topics

4. delete_topic

Delete a research topic and all its associated data.

Parameters:

  • topic (str): Topic name to delete

Example:

Delete the "old-research" topic

5. get_topic_info

Get detailed information about a specific topic.

Parameters:

  • topic (str): Topic name

Example:

Get information about the "artificial-intelligence" topic

Usage Examples

Once configured with Claude Desktop or another MCP client, you can:

  • "Save this article about machine learning to my 'ml-research' topic"
  • "Query my 'ml-research' for information about neural networks"
  • "List all my research topics"
  • "Get information about the 'quantum-computing' topic"
  • "Delete the 'old-notes' topic"

Technical Details

  • Protocol: Model Context Protocol (MCP)
  • Transport: stdio
  • Vector Database: ChromaDB
  • Embeddings: OpenAI text-embedding-3-small
  • Storage: Local filesystem at POCKET_DB_PATH/pocket_chroma_dbs/

Requirements

  • Python 3.11 or higher
  • OpenAI API key
  • Dependencies: chromadb, langchain, fastmcp, openai

Development

Setup Development Environment

# Clone the repository
git clone https://github.com/VikashS/pocket_agent_mcp.git
cd pocket_agent_mcp

# Install with development dependencies
uv pip install -e .

License

This project is licensed under the MIT License - see the LICENSE file for details.

Author

Vikash Singh

  • Email: vikash.singh@linuxmail.org
  • GitHub: https://github.com/vikashs

Acknowledgments

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured