
Pluggedin Random Number Generator
Teaching LLMs that Math.random() is so last century
Tools
generate_random_integer
Generate cryptographically secure random integers within a specified range
generate_random_float
Generate cryptographically secure random floating-point numbers
generate_random_bytes
Generate cryptographically secure random bytes
generate_uuid
Generate a cryptographically secure UUID (v4)
generate_random_string
Generate a cryptographically secure random string
generate_random_choice
Randomly select items from a given list using cryptographically secure randomness
generate_random_boolean
Generate cryptographically secure random boolean values
README
Plugged.in Random Number Generator MCP Server
A state-of-the-art cryptographically secure random number generator server implementing the Model Context Protocol (MCP). This server provides advanced random number generation capabilities for AI applications, LLMs, and other systems requiring high-quality randomness.
🚀 Features
- Cryptographically Secure: Uses Node.js built-in
crypto
module for cryptographically secure pseudorandom number generation (CSPRNG) - Multiple Data Types: Generate integers, floats, bytes, UUIDs, strings, booleans, and random choices
- Flexible Configuration: Customizable ranges, counts, encodings, and character sets
- MCP Compliant: Full compatibility with Model Context Protocol specification including tools and prompts
- AI-Friendly Prompts: Built-in prompt to help LLMs understand they should use this server for random generation
- Type Safety: Written in TypeScript with comprehensive type definitions
- Error Handling: Robust input validation and error reporting
- Performance Optimized: Efficient algorithms suitable for high-throughput applications
📦 Installation
Prerequisites
- Node.js 18.0.0 or higher
- npm or yarn package manager
Install via Desktop Extension (DXT)
For Claude Desktop users, you can install this server as a one-click Desktop Extension:
- Download the latest
.dxt
file from the releases page - Open Claude Desktop
- Go to Settings → Developer → MCP Servers
- Click "Install from file" and select the downloaded
.dxt
file
Install from npm
npm install -g pluggedin-random-number-generator-mcp
Or install locally in your project:
npm install pluggedin-random-number-generator-mcp
Deploy with Smithery
Deploy this MCP server to the cloud using Smithery:
- Fork this repository
- Connect your GitHub account to Smithery
- Navigate to the Deployments tab
- Click "Deploy"
The server includes a smithery.yaml
configuration file for easy deployment.
Build from Source
git clone https://github.com/VeriTeknik/pluggedin-random-number-generator-mcp.git
cd pluggedin-random-number-generator-mcp
npm install
npm run build
# Optional: Build DXT package
npm run build:dxt
🛠️ Usage
Running the Server
The server communicates via stdio (standard input/output) following the MCP protocol:
# Using the built version
node dist/index.js
# Using development mode
npm run dev
Integration with MCP Clients
For npm installation (recommended):
Add to your MCP client configuration. For Claude Desktop, add to your claude_desktop_config.json
:
{
"mcpServers": {
"random-generator": {
"command": "npx",
"args": ["-y", "pluggedin-random-number-generator-mcp@latest"]
}
}
}
This will always use the latest version from npm without requiring a global installation.
For local installation:
{
"mcpServers": {
"random-generator": {
"command": "node",
"args": ["node_modules/pluggedin-random-number-generator-mcp/dist/index.js"]
}
}
}
🔧 Available Tools
1. Generate Random Integers
Generate cryptographically secure random integers within a specified range.
Parameters:
min
(integer, optional): Minimum value (inclusive), default: 0max
(integer, optional): Maximum value (inclusive), default: 100count
(integer, optional): Number of integers to generate, default: 1, max: 1000
Example:
{
"name": "generate_random_integer",
"arguments": {
"min": 1,
"max": 100,
"count": 5
}
}
2. Generate Random Floats
Generate cryptographically secure random floating-point numbers.
Parameters:
min
(number, optional): Minimum value (inclusive), default: 0.0max
(number, optional): Maximum value (exclusive), default: 1.0count
(integer, optional): Number of floats to generate, default: 1, max: 1000precision
(integer, optional): Decimal places to round to, default: 6, max: 15
Example:
{
"name": "generate_random_float",
"arguments": {
"min": 0.0,
"max": 1.0,
"count": 3,
"precision": 4
}
}
3. Generate Random Bytes
Generate cryptographically secure random bytes in various encodings.
Parameters:
length
(integer, optional): Number of bytes to generate, default: 32, max: 1024encoding
(string, optional): Output encoding ("hex", "base64", "binary"), default: "hex"
Example:
{
"name": "generate_random_bytes",
"arguments": {
"length": 32,
"encoding": "hex"
}
}
4. Generate UUIDs
Generate cryptographically secure UUID version 4 identifiers.
Parameters:
count
(integer, optional): Number of UUIDs to generate, default: 1, max: 100format
(string, optional): UUID format ("standard", "compact"), default: "standard"
Example:
{
"name": "generate_uuid",
"arguments": {
"count": 3,
"format": "standard"
}
}
5. Generate Random Strings
Generate cryptographically secure random strings with customizable character sets.
Parameters:
length
(integer, optional): String length, default: 16, max: 256charset
(string, optional): Character set ("alphanumeric", "alphabetic", "numeric", "hex", "base64", "ascii_printable"), default: "alphanumeric"count
(integer, optional): Number of strings to generate, default: 1, max: 100
Example:
{
"name": "generate_random_string",
"arguments": {
"length": 12,
"charset": "alphanumeric",
"count": 2
}
}
6. Generate Random Choices
Randomly select items from a provided list using cryptographically secure randomness.
Parameters:
choices
(array, required): Array of string items to choose fromcount
(integer, optional): Number of items to select, default: 1allow_duplicates
(boolean, optional): Whether to allow duplicate selections, default: true
Example:
{
"name": "generate_random_choice",
"arguments": {
"choices": ["apple", "banana", "cherry", "date"],
"count": 2,
"allow_duplicates": false
}
}
7. Generate Random Booleans
Generate cryptographically secure random boolean values with configurable probability.
Parameters:
count
(integer, optional): Number of booleans to generate, default: 1, max: 1000probability
(number, optional): Probability of true (0.0 to 1.0), default: 0.5
Example:
{
"name": "generate_random_boolean",
"arguments": {
"count": 10,
"probability": 0.7
}
}
🤖 AI Prompts
The server includes a built-in prompt to help LLMs understand they should use this server for random number generation rather than attempting to generate random values themselves.
Available Prompt: generate_random
This prompt educates the AI about its limitations in generating random numbers and guides it to use the available cryptographically secure tools.
Parameters:
type
(string, optional): Type of random value needed (integer, float, uuid, string, bytes, choice, boolean)requirements
(string, optional): Specific requirements for the random generation
Example Usage: When an LLM receives a request like "Generate a random password" or "Pick a random number", the prompt will:
- Acknowledge that LLMs cannot generate truly random values
- Explain the available cryptographically secure tools
- Guide the AI to use the appropriate tool for the task
This ensures that all random generation in your application uses proper cryptographic methods rather than predictable AI-generated patterns.
🔒 Security Features
This server implements several security best practices:
-
Cryptographically Secure Randomness: All random number generation uses Node.js
crypto
module functions (randomBytes
,randomInt
,randomUUID
) which provide cryptographically secure pseudorandom numbers suitable for security-sensitive applications. -
Input Validation: Comprehensive validation of all input parameters to prevent injection attacks and ensure data integrity.
-
Rate Limiting: Built-in limits on generation counts to prevent resource exhaustion attacks.
-
Error Handling: Secure error messages that don't leak sensitive information about the system state.
🧪 Testing
The server includes a comprehensive test suite that validates all functionality:
# Run the test suite
node test.js
The test suite covers:
- Tool discovery and listing
- All random generation functions
- Input validation and error handling
- Output format verification
- Statistical properties validation
📊 Performance
The server is optimized for performance while maintaining security:
- Efficient Algorithms: Uses optimized native crypto functions
- Memory Management: Minimal memory footprint with efficient buffer handling
- Concurrent Requests: Thread-safe design supporting multiple simultaneous requests
- Scalability: Suitable for high-throughput applications
🔧 Development
Project Structure
pluggedin-random-number-generator-mcp/
├── src/
│ └── index.ts # Main server implementation
├── dist/ # Compiled JavaScript output
├── test.js # Comprehensive test suite
├── package.json # Project configuration
├── tsconfig.json # TypeScript configuration
└── README.md # This documentation
Building
npm run build
Development Mode
npm run dev
Testing with MCP Inspector
You can test the server using the MCP Inspector tool:
npm run inspector
This will start the MCP Inspector web interface where you can:
- View available tools
- Test tool execution
- Inspect request/response payloads
- Debug server behavior
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
Development Guidelines
- Follow TypeScript best practices
- Maintain comprehensive test coverage
- Update documentation for new features
- Ensure all tests pass before submitting
- Follow semantic versioning for releases
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Related Projects
- Model Context Protocol - The official MCP specification
- Plugged.in - MCP server management and discovery platform
- MCP SDK - Official TypeScript SDK for MCP
📞 Support
For support, questions, or feature requests:
- Open an issue on GitHub
- Visit the Plugged.in platform for MCP server management
- Check the MCP documentation for protocol details
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.