Planning System MCP Server

Planning System MCP Server

Enables AI agents to create, manage, and search hierarchical plans with phases, tasks, and milestones through a comprehensive planning API. Supports CRUD operations, batch updates, rich context retrieval, and artifact management for structured project planning.

Category
Visit Server

README

Planning System MCP Server

A Model Context Protocol (MCP) server interface for the Planning System API, enabling AI agents to interact with planning data through powerful, efficient tools.

Overview

This MCP server connects to the Planning System API, providing AI agents with comprehensive planning capabilities through a clean, structured interface. All interactions use JSON responses for easy parsing and processing.

✨ Key Features

Core Capabilities

  • Full CRUD Operations: Create, read, update, and delete plans, nodes, and artifacts
  • Unified Search: Single powerful search tool for all contexts (global, plans, nodes)
  • Batch Operations: Update multiple nodes or retrieve multiple artifacts efficiently
  • Rich Context: Get comprehensive node context including ancestry, children, logs, and artifacts
  • Structured Responses: Clean JSON data for easy agent processing

Available Tools

Planning & Search

  • search - Universal search across all scopes with filters
  • create_plan - Create new plans
  • update_plan - Update plan properties
  • delete_plan - Delete entire plans
  • get_plan_structure - Get hierarchical plan structure
  • get_plan_summary - Get comprehensive statistics and summary

Node Management

  • create_node - Create phases, tasks, or milestones
  • update_node - Update any node properties
  • delete_node - Delete nodes and their children
  • move_node - Reorder or reparent nodes
  • get_node_context - Get rich contextual information
  • get_node_ancestry - Get path from root to node
  • batch_update_nodes - Update multiple nodes at once

Collaboration & Tracking

  • add_log - Add log entries (including comments, progress, reasoning, etc.)
  • get_logs - Retrieve filtered log entries
  • manage_artifact - Add, get, search, or list artifacts
  • batch_get_artifacts - Retrieve multiple artifacts efficiently

Getting Started

Prerequisites

  • Node.js 16+
  • npm or yarn
  • Access to a running Planning System API
  • API token for authentication

Quick Setup (Recommended)

  1. Install dependencies
npm install
  1. Run the automated setup wizard
npm run setup

The wizard will:

  • Check API server connectivity
  • Guide you through creating an API token in the UI
  • Create your .env file
  • Detect and update your Claude Desktop config
  • Test the connection

That's it! Restart Claude Desktop and you're ready to go.

Manual Installation (Advanced)

If you prefer manual setup or the wizard doesn't work for your setup:

  1. Clone the repository
git clone https://github.com/talkingagents/agent-planner-mcp.git
cd agent-planner-mcp
  1. Install dependencies
npm install
  1. Create an API token:

    • Open http://localhost:3001/app/settings in your browser
    • Navigate to "API Tokens" section
    • Click "Create MCP Token"
    • Copy the generated token
  2. Create .env file:

cp .env.example .env

Edit the .env file:

API_URL=http://localhost:3000
USER_API_TOKEN=your_api_token_here
MCP_SERVER_NAME=planning-system
MCP_SERVER_VERSION=0.2.0
NODE_ENV=production
  1. Configure Claude Desktop manually (see "Using with Claude Desktop" section below)

  2. Start the server

npm start

Using with Claude Desktop

Option 1: Using npx (Recommended - Simplest Setup)

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "planning-system": {
      "command": "npx",
      "args": [
        "-y",
        "agent-planner-mcp"
      ],
      "env": {
        "API_URL": "https://api.agentplanner.io",
        "USER_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Benefits:

  • No need to clone the repository
  • Always uses the latest published version
  • Simplest configuration

For local development, use http://localhost:3000 instead:

"API_URL": "http://localhost:3000"

Option 2: Using Local Installation

If you prefer to run from a local clone:

{
  "mcpServers": {
    "planning-system": {
      "command": "node",
      "args": [
        "/path/to/agent-planner-mcp/src/index.js"
      ],
      "env": {
        "API_URL": "https://api.agentplanner.io",
        "USER_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Then restart Claude Desktop to load the planning tools.

Example Usage

Search Examples

// Global search
search({ 
  scope: "global", 
  query: "API integration",
  filters: { type: "task", status: "in_progress" }
})

// Search within a specific plan
search({ 
  scope: "plan", 
  scope_id: "plan-123",
  query: "testing"
})

Plan Management

// Create a plan with initial structure
create_plan({ 
  title: "Product Launch Q1 2025",
  description: "Complete product launch plan",
  status: "active"
})

// Add nodes to the plan
create_node({
  plan_id: "plan-123",
  node_type: "phase",
  title: "Market Research",
  description: "Initial market analysis and competitor research"
})

Batch Operations

// Update multiple nodes efficiently
batch_update_nodes({
  plan_id: "plan-123",
  updates: [
    { node_id: "node-1", status: "completed" },
    { node_id: "node-2", status: "in_progress" },
    { node_id: "node-3", description: "Updated requirements" }
  ]
})

// Get multiple artifacts at once
batch_get_artifacts({
  plan_id: "plan-123",
  artifact_requests: [
    { node_id: "node-1", artifact_id: "art-1" },
    { node_id: "node-2", artifact_id: "art-2" }
  ]
})

Rich Context

// Get comprehensive node information
get_node_context({
  plan_id: "plan-123",
  node_id: "node-456"
})
// Returns: node details, children, logs, artifacts, plan info

// Track node ancestry
get_node_ancestry({
  plan_id: "plan-123",
  node_id: "node-456"
})
// Returns: path from root to node

Project Structure

src/
├── index.js              # Main entry point
├── tools.js              # Tool implementations
├── api-client.js         # API client with axios
└── tools/
    └── search-wrapper.js # Search functionality wrapper

Development

Running in Development Mode

npm run dev  # Auto-restart on changes

Environment Variables

  • API_URL - Planning System API URL
  • USER_API_TOKEN - Authentication token
  • MCP_SERVER_NAME - Server name (default: planning-system-mcp)
  • MCP_SERVER_VERSION - Server version (default: 0.2.0)
  • NODE_ENV - Environment (development/production)

Testing Tools

// Test search functionality
search({ scope: "global", query: "test" })

// Test node operations
create_node({ plan_id: "...", node_type: "task", title: "Test" })
update_node({ plan_id: "...", node_id: "...", status: "completed" })
delete_node({ plan_id: "...", node_id: "..." })

// Test batch operations
batch_update_nodes({ plan_id: "...", updates: [...] })

Troubleshooting

Common Issues

  • Connection errors: Ensure the Planning System API is running
  • Authentication errors: Verify your USER_API_TOKEN is valid
  • Tool errors: Check error messages in console output

Debug Mode

Enable verbose logging:

NODE_ENV=development npm start

Performance Tips

  1. Use batch operations when updating multiple items
  2. Use appropriate search scopes to minimize API calls
  3. Cache plan structures when making multiple operations
  4. Apply filters to limit result sets

License

MIT License - see LICENSE file for details.

Support

  • Report bugs via GitHub Issues
  • See PDR.md for technical design details
  • Check CHANGELOG.md for version history

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured