Planning System MCP Server
Enables AI agents to create, manage, and search hierarchical plans with phases, tasks, and milestones through a comprehensive planning API. Supports CRUD operations, batch updates, rich context retrieval, and artifact management for structured project planning.
README
Planning System MCP Server
A Model Context Protocol (MCP) server interface for the Planning System API, enabling AI agents to interact with planning data through powerful, efficient tools.
Overview
This MCP server connects to the Planning System API, providing AI agents with comprehensive planning capabilities through a clean, structured interface. All interactions use JSON responses for easy parsing and processing.
✨ Key Features
Core Capabilities
- Full CRUD Operations: Create, read, update, and delete plans, nodes, and artifacts
- Unified Search: Single powerful search tool for all contexts (global, plans, nodes)
- Batch Operations: Update multiple nodes or retrieve multiple artifacts efficiently
- Rich Context: Get comprehensive node context including ancestry, children, logs, and artifacts
- Structured Responses: Clean JSON data for easy agent processing
Available Tools
Planning & Search
search- Universal search across all scopes with filterscreate_plan- Create new plansupdate_plan- Update plan propertiesdelete_plan- Delete entire plansget_plan_structure- Get hierarchical plan structureget_plan_summary- Get comprehensive statistics and summary
Node Management
create_node- Create phases, tasks, or milestonesupdate_node- Update any node propertiesdelete_node- Delete nodes and their childrenmove_node- Reorder or reparent nodesget_node_context- Get rich contextual informationget_node_ancestry- Get path from root to nodebatch_update_nodes- Update multiple nodes at once
Collaboration & Tracking
add_log- Add log entries (including comments, progress, reasoning, etc.)get_logs- Retrieve filtered log entriesmanage_artifact- Add, get, search, or list artifactsbatch_get_artifacts- Retrieve multiple artifacts efficiently
Getting Started
Prerequisites
- Node.js 16+
- npm or yarn
- Access to a running Planning System API
- API token for authentication
Quick Setup (Recommended)
- Install dependencies
npm install
- Run the automated setup wizard
npm run setup
The wizard will:
- Check API server connectivity
- Guide you through creating an API token in the UI
- Create your
.envfile - Detect and update your Claude Desktop config
- Test the connection
That's it! Restart Claude Desktop and you're ready to go.
Manual Installation (Advanced)
If you prefer manual setup or the wizard doesn't work for your setup:
- Clone the repository
git clone https://github.com/talkingagents/agent-planner-mcp.git
cd agent-planner-mcp
- Install dependencies
npm install
-
Create an API token:
- Open http://localhost:3001/app/settings in your browser
- Navigate to "API Tokens" section
- Click "Create MCP Token"
- Copy the generated token
-
Create
.envfile:
cp .env.example .env
Edit the .env file:
API_URL=http://localhost:3000
USER_API_TOKEN=your_api_token_here
MCP_SERVER_NAME=planning-system
MCP_SERVER_VERSION=0.2.0
NODE_ENV=production
-
Configure Claude Desktop manually (see "Using with Claude Desktop" section below)
-
Start the server
npm start
Using with Claude Desktop
Option 1: Using npx (Recommended - Simplest Setup)
Add to your claude_desktop_config.json:
{
"mcpServers": {
"planning-system": {
"command": "npx",
"args": [
"-y",
"agent-planner-mcp"
],
"env": {
"API_URL": "https://api.agentplanner.io",
"USER_API_TOKEN": "your_api_token_here"
}
}
}
}
Benefits:
- No need to clone the repository
- Always uses the latest published version
- Simplest configuration
For local development, use http://localhost:3000 instead:
"API_URL": "http://localhost:3000"
Option 2: Using Local Installation
If you prefer to run from a local clone:
{
"mcpServers": {
"planning-system": {
"command": "node",
"args": [
"/path/to/agent-planner-mcp/src/index.js"
],
"env": {
"API_URL": "https://api.agentplanner.io",
"USER_API_TOKEN": "your_api_token_here"
}
}
}
}
Then restart Claude Desktop to load the planning tools.
Example Usage
Search Examples
// Global search
search({
scope: "global",
query: "API integration",
filters: { type: "task", status: "in_progress" }
})
// Search within a specific plan
search({
scope: "plan",
scope_id: "plan-123",
query: "testing"
})
Plan Management
// Create a plan with initial structure
create_plan({
title: "Product Launch Q1 2025",
description: "Complete product launch plan",
status: "active"
})
// Add nodes to the plan
create_node({
plan_id: "plan-123",
node_type: "phase",
title: "Market Research",
description: "Initial market analysis and competitor research"
})
Batch Operations
// Update multiple nodes efficiently
batch_update_nodes({
plan_id: "plan-123",
updates: [
{ node_id: "node-1", status: "completed" },
{ node_id: "node-2", status: "in_progress" },
{ node_id: "node-3", description: "Updated requirements" }
]
})
// Get multiple artifacts at once
batch_get_artifacts({
plan_id: "plan-123",
artifact_requests: [
{ node_id: "node-1", artifact_id: "art-1" },
{ node_id: "node-2", artifact_id: "art-2" }
]
})
Rich Context
// Get comprehensive node information
get_node_context({
plan_id: "plan-123",
node_id: "node-456"
})
// Returns: node details, children, logs, artifacts, plan info
// Track node ancestry
get_node_ancestry({
plan_id: "plan-123",
node_id: "node-456"
})
// Returns: path from root to node
Project Structure
src/
├── index.js # Main entry point
├── tools.js # Tool implementations
├── api-client.js # API client with axios
└── tools/
└── search-wrapper.js # Search functionality wrapper
Development
Running in Development Mode
npm run dev # Auto-restart on changes
Environment Variables
API_URL- Planning System API URLUSER_API_TOKEN- Authentication tokenMCP_SERVER_NAME- Server name (default: planning-system-mcp)MCP_SERVER_VERSION- Server version (default: 0.2.0)NODE_ENV- Environment (development/production)
Testing Tools
// Test search functionality
search({ scope: "global", query: "test" })
// Test node operations
create_node({ plan_id: "...", node_type: "task", title: "Test" })
update_node({ plan_id: "...", node_id: "...", status: "completed" })
delete_node({ plan_id: "...", node_id: "..." })
// Test batch operations
batch_update_nodes({ plan_id: "...", updates: [...] })
Troubleshooting
Common Issues
- Connection errors: Ensure the Planning System API is running
- Authentication errors: Verify your USER_API_TOKEN is valid
- Tool errors: Check error messages in console output
Debug Mode
Enable verbose logging:
NODE_ENV=development npm start
Performance Tips
- Use batch operations when updating multiple items
- Use appropriate search scopes to minimize API calls
- Cache plan structures when making multiple operations
- Apply filters to limit result sets
License
MIT License - see LICENSE file for details.
Support
- Report bugs via GitHub Issues
- See PDR.md for technical design details
- Check CHANGELOG.md for version history
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.