Pixabay MCP Server
Enables AI assistants to search for and retrieve images, illustrations, and videos directly from Pixabay. It provides specialized tools for discovering diverse media content like photos and animations using the Pixabay API.
README
Pixabay MCP Server
English
A Model Context Protocol (MCP) server that enables AI assistants to search for images and videos on Pixabay.
Features
- 🖼️ search_images - Search for photos, illustrations, and vectors
- 🎬 search_videos - Search for videos and animations
Installation
Method 1: Quick Start with uvx (Recommended)
The easiest way to use this MCP server is with uvx. No manual cloning required!
- Get your Pixabay API Key
- Add the following to your MCP client configuration:
{
"mcpServers": {
"pixabay": {
"command": "uvx",
"args": [
"https://github.com/helloHupc/pixabay_mcp.git"
],
"env": {
"PIXABAY_API_KEY": "your-api-key-here"
}
}
}
}
- Restart your MCP client and start using!
Method 2: Local Development
For development or to customize the code, clone the repository locally:
git clone https://github.com/helloHupc/pixabay_mcp.git
cd pixabay_mcp
Then configure your MCP client:
{
"mcpServers": {
"pixabay": {
"command": "uv",
"args": [
"run",
"--directory", "/path/to/pixabay_mcp",
"python", "src/pixabay_mcp/server.py"
],
"env": {
"PIXABAY_API_KEY": "your-api-key-here"
}
}
}
}
Make sure to replace /path/to/pixabay_mcp with your actual local path.
Get Your API Key
- Create a free account at Pixabay
- Go to API Documentation and copy your API key
Quick Start
- Get your API key from Pixabay
- Copy configuration from Method 1 above
- Replace
your-api-key-herewith your actual API key - Add to your MCP client settings
- Restart your MCP client
- Start searching!
Usage Examples
Once configured, you can ask your AI assistant:
- "Search for photos of yellow flowers"
- "Find some nature videos"
- "Look for vector illustrations of cats"
Project Structure
pixabay_mcp/
├── src/
│ └── pixabay_mcp/
│ ├── __init__.py
│ └── server.py # Main MCP server implementation
├── pyproject.toml # Project configuration
├── uv.lock # Dependency lock file
├── README.md # This file
├── LICENSE # MIT License
└── .gitignore # Git ignore rules
License
MIT License
中文
一个 MCP (Model Context Protocol) 服务,让 AI 助手能够在 Pixabay 上搜索图片和视频。
功能
- 🖼️ search_images - 搜索照片、插画和矢量图
- 🎬 search_videos - 搜索视频和动画
安装
方法 1:使用 uvx 快速开始(推荐)
最简单的使用方式,使用 uvx 直接从 Gitee 运行,无需手动克隆!
- 获取你的 Pixabay API 密钥
- 在 MCP 客户端配置中添加以下内容:
{
"mcpServers": {
"pixabay": {
"command": "uvx",
"args": [
"https://github.com/helloHupc/pixabay_mcp.git"
],
"env": {
"PIXABAY_API_KEY": "你的API密钥"
}
}
}
}
- 重启 MCP 客户端,开始使用!
方法 2:本地开发调试
用于开发或自定义代码,将仓库克隆到本地:
git clone https://github.com/helloHupc/pixabay_mcp.git
cd
然后配置 MCP 客户端:
{
"mcpServers": {
"pixabay": {
"command": "uv",
"args": [
"run",
"--directory", "/path/to/pixabay_mcp",
"python", "src/pixabay_mcp/server.py"
],
"env": {
"PIXABAY_API_KEY": "你的API密钥"
}
}
}
}
请将 /path/to/pixabay_mcp 替换为你的实际本地路径。
获取 API 密钥
快速开始
- 从 Pixabay 获取你的 API 密钥
- 复制上面方法 1 中的配置
- 将
你的API密钥替换为你的实际 API 密钥 - 添加到你的 MCP 客户端设置
- 重启 MCP 客户端
- 开始搜索!
使用示例
配置完成后,你可以这样问 AI 助手:
- "帮我搜索黄色花朵的图片"
- "找一些自然风景的视频"
- "搜索猫咪的矢量插画"
项目结构
pixabay_mcp/
├── src/
│ └── pixabay_mcp/
│ ├── __init__.py
│ └── server.py # MCP 服务器主实现
├── pyproject.toml # 项目配置文件
├── uv.lock # 依赖锁定文件
├── README.md # 本文件
├── LICENSE # MIT 许可证
└── .gitignore # Git 忽略规则
uv 和 uvx 的区别
uv - 通用 Python 项目管理工具
- 用于开发、安装包、运行脚本
- 需要手动管理虚拟环境
- 适合本地开发和调试
uvx - 快速执行工具
- 直接从 PyPI 或 Git 仓库运行包
- 自动管理隔离环境
- 无需手动安装,开箱即用
- 适合快速部署和分享
许可证
MIT 许可证
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.