Pixabay MCP Server

Pixabay MCP Server

Enables AI assistants to search for and retrieve images, illustrations, and videos directly from Pixabay. It provides specialized tools for discovering diverse media content like photos and animations using the Pixabay API.

Category
Visit Server

README

Pixabay MCP Server

English | 中文


English

A Model Context Protocol (MCP) server that enables AI assistants to search for images and videos on Pixabay.

Features

  • 🖼️ search_images - Search for photos, illustrations, and vectors
  • 🎬 search_videos - Search for videos and animations

Installation

Method 1: Quick Start with uvx (Recommended)

The easiest way to use this MCP server is with uvx. No manual cloning required!

  1. Get your Pixabay API Key
  2. Add the following to your MCP client configuration:
{
  "mcpServers": {
    "pixabay": {
      "command": "uvx",
      "args": [
        "https://github.com/helloHupc/pixabay_mcp.git"
      ],
      "env": {
        "PIXABAY_API_KEY": "your-api-key-here"
      }
    }
  }
}
  1. Restart your MCP client and start using!

Method 2: Local Development

For development or to customize the code, clone the repository locally:

git clone https://github.com/helloHupc/pixabay_mcp.git
cd pixabay_mcp

Then configure your MCP client:

{
  "mcpServers": {
    "pixabay": {
      "command": "uv",
      "args": [
        "run",
        "--directory", "/path/to/pixabay_mcp",
        "python", "src/pixabay_mcp/server.py"
      ],
      "env": {
        "PIXABAY_API_KEY": "your-api-key-here"
      }
    }
  }
}

Make sure to replace /path/to/pixabay_mcp with your actual local path.

Get Your API Key

  1. Create a free account at Pixabay
  2. Go to API Documentation and copy your API key

Quick Start

  1. Get your API key from Pixabay
  2. Copy configuration from Method 1 above
  3. Replace your-api-key-here with your actual API key
  4. Add to your MCP client settings
  5. Restart your MCP client
  6. Start searching!

Usage Examples

Once configured, you can ask your AI assistant:

  • "Search for photos of yellow flowers"
  • "Find some nature videos"
  • "Look for vector illustrations of cats"

Project Structure

pixabay_mcp/
├── src/
│   └── pixabay_mcp/
│       ├── __init__.py
│       └── server.py          # Main MCP server implementation
├── pyproject.toml              # Project configuration
├── uv.lock                     # Dependency lock file
├── README.md                   # This file
├── LICENSE                     # MIT License
└── .gitignore                  # Git ignore rules

License

MIT License


中文

一个 MCP (Model Context Protocol) 服务,让 AI 助手能够在 Pixabay 上搜索图片和视频。

功能

  • 🖼️ search_images - 搜索照片、插画和矢量图
  • 🎬 search_videos - 搜索视频和动画

安装

方法 1:使用 uvx 快速开始(推荐)

最简单的使用方式,使用 uvx 直接从 Gitee 运行,无需手动克隆!

  1. 获取你的 Pixabay API 密钥
  2. 在 MCP 客户端配置中添加以下内容:
{
  "mcpServers": {
    "pixabay": {
      "command": "uvx",
      "args": [
        "https://github.com/helloHupc/pixabay_mcp.git"
      ],
      "env": {
        "PIXABAY_API_KEY": "你的API密钥"
      }
    }
  }
}
  1. 重启 MCP 客户端,开始使用!

方法 2:本地开发调试

用于开发或自定义代码,将仓库克隆到本地:

git clone https://github.com/helloHupc/pixabay_mcp.git
cd

然后配置 MCP 客户端:

{
  "mcpServers": {
    "pixabay": {
      "command": "uv",
      "args": [
        "run",
        "--directory", "/path/to/pixabay_mcp",
        "python", "src/pixabay_mcp/server.py"
      ],
      "env": {
        "PIXABAY_API_KEY": "你的API密钥"
      }
    }
  }
}

请将 /path/to/pixabay_mcp 替换为你的实际本地路径。

获取 API 密钥

  1. Pixabay 注册免费账号
  2. 访问 API 文档页面 复制你的 API 密钥

快速开始

  1. 从 Pixabay 获取你的 API 密钥
  2. 复制上面方法 1 中的配置
  3. 你的API密钥 替换为你的实际 API 密钥
  4. 添加到你的 MCP 客户端设置
  5. 重启 MCP 客户端
  6. 开始搜索!

使用示例

配置完成后,你可以这样问 AI 助手:

  • "帮我搜索黄色花朵的图片"
  • "找一些自然风景的视频"
  • "搜索猫咪的矢量插画"

项目结构

pixabay_mcp/
├── src/
│   └── pixabay_mcp/
│       ├── __init__.py
│       └── server.py          # MCP 服务器主实现
├── pyproject.toml              # 项目配置文件
├── uv.lock                     # 依赖锁定文件
├── README.md                   # 本文件
├── LICENSE                     # MIT 许可证
└── .gitignore                  # Git 忽略规则

uv 和 uvx 的区别

uv - 通用 Python 项目管理工具

  • 用于开发、安装包、运行脚本
  • 需要手动管理虚拟环境
  • 适合本地开发和调试

uvx - 快速执行工具

  • 直接从 PyPI 或 Git 仓库运行包
  • 自动管理隔离环境
  • 无需手动安装,开箱即用
  • 适合快速部署和分享

许可证

MIT 许可证

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured