pharo-nc-mcp-server

pharo-nc-mcp-server

A local MCP server that enables users to evaluate Pharo Smalltalk expressions and retrieve system information via NeoConsole. It provides comprehensive tools for inspecting class definitions, method sources, and system metrics within a Pharo environment.

Category
Visit Server

README

pharo-nc-mcp-server

Tests

A local MCP server to evaluate Pharo Smalltalk expressions and get system information via NeoConsole.

Prerequisites

  • Python 3.10 or later
  • uv package manager
  • Pharo with NeoConsole installed

Pharo Setup

  1. Install Pharo and NeoConsole
  2. Set the PHARO_DIR environment variable to your Pharo installation directory (default: ~/pharo)
  3. Ensure NeoConsole.image is available in the Pharo directory

Installation

  1. Clone the repository:
git clone <repository-url>
cd pharo-nc-mcp-server
  1. Install dependencies using uv:
uv sync --dev

Usage

Running the MCP Server

Start the server:

uv run pharo-nc-mcp-server

Cursor MCP settings

{
  "mcpServers": {
    "pharo-nc-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "/your-path/to/pharo-nc-mcp-server",
        "run",
        "pharo-nc-mcp-server"
      ]
    }
  }
}

MCP Tools Available

evaluate_smalltalk_with_neo_console

Execute Smalltalk expressions in Pharo using NeoConsole:

# Example usage in MCP client
evaluate_smalltalk_with_neo_console(expression="42 factorial", command="eval")

evaluate_simple_smalltalk

Execute Smalltalk expressions using Pharo's simple -e option:

# Simple evaluation
evaluate_simple_smalltalk(expression="Time now")

get_pharo_metric

Retrieve system metrics from Pharo:

# Get system status
get_pharo_metric(metric="system.status")

# Get memory information
get_pharo_metric(metric="memory.free")

get_class_comment

Get the comment of a Pharo class:

# Get Array class comment
get_class_comment(class_name="Array")

get_class_definition

Get the definition of a Pharo class:

# Get Array class definition
get_class_definition(class_name="Array")

get_method_list

Get the list of method selectors for a Pharo class:

# Get all method selectors for Array class
get_method_list(class_name="Array")

get_method_source

Get the source code of a specific method in a Pharo class:

# Get source code for Array>>asSet method
get_method_source(class_name="Array", selector="asSet")

Environment Variables

  • PHARO_DIR: Path to Pharo installation directory (default: ~/pharo)

Development

Code Formatting and Linting

# Format code
uv run black pharo_nc_mcp_server/

# Lint code
uv run ruff check pharo_nc_mcp_server/

# Run tests
uv run python -m pytest

# Or use the test script
./scripts/test.sh

Development Scripts

The project includes several convenience scripts in the scripts/ directory:

scripts/format.sh

Formats all code and documentation files in one command:

  • Formats Python code using Black
  • Formats markdown files using mdformat
  • Runs linting checks with Ruff
./scripts/format.sh

scripts/test.sh

Runs the test suite using pytest:

./scripts/test.sh

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured