pgtuner_mcp
provides AI-powered PostgreSQL performance tuning capabilities.
README
PostgreSQL performance tuning MCP
<a href="https://glama.ai/mcp/servers/@isdaniel/pgtuner-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@isdaniel/pgtuner-mcp/badge" /> </a>
A Model Context Protocol (MCP) server that provides AI-powered PostgreSQL performance tuning capabilities. This server helps identify slow queries, recommend optimal indexes, analyze execution plans, and leverage HypoPG for hypothetical index testing.
Features
Query Analysis
- Get top resource-consuming queries from
pg_stat_statements - Analyze query execution plans with
EXPLAINandEXPLAIN ANALYZE - Identify slow queries and bottlenecks
Index Tuning
- Smart index recommendations based on query workload
- Hypothetical index testing with HypoPG extension
- Index health analysis (duplicate, unused, bloated indexes)
- Estimate index size before creation
Database Health
- Connection utilization monitoring
- Vacuum health and transaction ID wraparound checks
- Replication lag monitoring
- Buffer cache hit rate analysis
- Sequence limit warnings
HypoPG Integration
When the HypoPG extension is available, the server can:
- Create hypothetical indexes without actual disk usage
- Test how PostgreSQL would use potential indexes
- Compare query plans with and without proposed indexes
- Hide existing indexes to test removal impact
Installation
Standard Installation (for MCP clients like Claude Desktop)
pip install pgtuner_mcp
Or using uv:
uv pip install pgtuner_mcp
Manual Installation
git clone https://github.com/example/pgtuner_mcp.git
cd pgtuner_mcp
pip install -e .
Configuration
Environment Variables
DATABASE_URI: PostgreSQL connection string (required)- Format:
postgresql://user:password@host:port/database
- Format:
MCP Client Configuration
Add to your cline_mcp_settings.json:
{
"mcpServers": {
"pgtuner_mcp": {
"command": "python",
"args": ["-m", "pgtuner_mcp"],
"env": {
"DATABASE_URI": "postgresql://user:password@localhost:5432/mydb"
},
"disabled": false,
"autoApprove": []
}
}
}
Server Modes
1. Standard MCP Mode (Default)
# Default mode (stdio)
python -m pgtuner_mcp
# Explicitly specify stdio mode
python -m pgtuner_mcp --mode stdio
2. HTTP SSE Mode (Legacy Web Applications)
# Start SSE server on default host/port (0.0.0.0:8080)
python -m pgtuner_mcp --mode sse
# Specify custom host and port
python -m pgtuner_mcp --mode sse --host localhost --port 3000
# Enable debug mode
python -m pgtuner_mcp --mode sse --debug
3. Streamable HTTP Mode (Modern MCP Protocol - Recommended)
The streamable-http mode implements the modern MCP Streamable HTTP protocol with a single /mcp endpoint. It supports both stateful (session-based) and stateless modes.
# Start Streamable HTTP server in stateful mode (default)
python -m pgtuner_mcp --mode streamable-http
# Start in stateless mode (fresh transport per request)
python -m pgtuner_mcp --mode streamable-http --stateless
# Specify custom host and port
python -m pgtuner_mcp --mode streamable-http --host localhost --port 8080
# Enable debug mode
python -m pgtuner_mcp --mode streamable-http --debug
Stateful vs Stateless:
- Stateful (default): Maintains session state across requests using
mcp-session-idheader. Ideal for long-running interactions. - Stateless: Creates a fresh transport for each request with no session tracking. Ideal for serverless deployments or simple request/response patterns.
Endpoint: http://{host}:{port}/mcp
Available Tools
Query Analysis Tools
-
get_top_queries- Get the slowest or most resource-intensive queries- Parameters:
sort_by(total_time, mean_time, resources),limit
- Parameters:
-
explain_query- Explain the execution plan for a SQL query- Parameters:
sql,analyze(boolean),hypothetical_indexes(optional)
- Parameters:
Index Tuning Tools
-
analyze_workload_indexes- Analyze frequently executed queries and recommend optimal indexes- Parameters:
max_index_size_mb,method(dta, greedy)
- Parameters:
-
analyze_query_indexes- Analyze specific SQL queries and recommend indexes- Parameters:
queries(list),max_index_size_mb
- Parameters:
-
get_index_recommendations- Get index recommendations for a single query- Parameters:
query,max_recommendations
- Parameters:
-
test_hypothetical_index- Test how a hypothetical index would affect query performance- Parameters:
table,columns,query,using(btree, hash, etc.)
- Parameters:
-
list_hypothetical_indexes- List all current hypothetical indexes -
reset_hypothetical_indexes- Remove all hypothetical indexes
Database Health Tools
-
analyze_db_health- Comprehensive database health analysis- Parameters:
health_type(index, connection, vacuum, sequence, replication, buffer, constraint, all)
- Parameters:
-
get_index_health- Analyze index health (duplicate, unused, bloated)
Utility Tools
-
execute_sql- Execute a SQL query (respects access mode)- Parameters:
sql
- Parameters:
-
list_schemas- List all schemas in the database -
get_table_info- Get detailed information about a table- Parameters:
schema,table
- Parameters:
HypoPG Extension
Enable in Database
CREATE EXTENSION hypopg;
Example Usage
Find Slow Queries
# Get top 10 resource-consuming queries
result = await get_top_queries(sort_by="resources", limit=10)
Analyze and Optimize a Query
# Get explain plan
plan = await explain_query(
sql="SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"
)
# Get index recommendations
recommendations = await analyze_query_indexes(
queries=["SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"]
)
# Test hypothetical index
test_result = await test_hypothetical_index(
table="orders",
columns=["user_id", "status"],
query="SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"
)
Database Health Check
# Run all health checks
health = await analyze_db_health(health_type="all")
# Check specific areas
index_health = await analyze_db_health(health_type="index")
vacuum_health = await analyze_db_health(health_type="vacuum")
Docker
Build
docker build -t pgtuner_mcp .
Run
# Streamable HTTP mode (recommended)
docker run -p 8080:8080 \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp --mode streamable-http
# Streamable HTTP stateless mode
docker run -p 8080:8080 \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp --mode streamable-http --stateless
# SSE mode (legacy)
docker run -p 8080:8080 \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp --mode sse
# stdio mode (for MCP clients)
docker run \
-e DATABASE_URI=postgresql://user:pass@host:5432/db \
pgtuner_mcp
Requirements
- Python 3.10+
- PostgreSQL 12+ (recommended: 14+)
pg_stat_statementsextension (for query analysis)hypopgextension (optional, for hypothetical index testing)
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases