pgtuner_mcp

pgtuner_mcp

provides AI-powered PostgreSQL performance tuning capabilities.

Category
Visit Server

README

PostgreSQL performance tuning MCP

PyPI - Version PyPI - Downloads

<a href="https://glama.ai/mcp/servers/@isdaniel/pgtuner-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@isdaniel/pgtuner-mcp/badge" /> </a>

A Model Context Protocol (MCP) server that provides AI-powered PostgreSQL performance tuning capabilities. This server helps identify slow queries, recommend optimal indexes, analyze execution plans, and leverage HypoPG for hypothetical index testing.

Features

Query Analysis

  • Get top resource-consuming queries from pg_stat_statements
  • Analyze query execution plans with EXPLAIN and EXPLAIN ANALYZE
  • Identify slow queries and bottlenecks

Index Tuning

  • Smart index recommendations based on query workload
  • Hypothetical index testing with HypoPG extension
  • Index health analysis (duplicate, unused, bloated indexes)
  • Estimate index size before creation

Database Health

  • Connection utilization monitoring
  • Vacuum health and transaction ID wraparound checks
  • Replication lag monitoring
  • Buffer cache hit rate analysis
  • Sequence limit warnings

HypoPG Integration

When the HypoPG extension is available, the server can:

  • Create hypothetical indexes without actual disk usage
  • Test how PostgreSQL would use potential indexes
  • Compare query plans with and without proposed indexes
  • Hide existing indexes to test removal impact

Installation

Standard Installation (for MCP clients like Claude Desktop)

pip install pgtuner_mcp

Or using uv:

uv pip install pgtuner_mcp

Manual Installation

git clone https://github.com/example/pgtuner_mcp.git
cd pgtuner_mcp
pip install -e .

Configuration

Environment Variables

  • DATABASE_URI: PostgreSQL connection string (required)
    • Format: postgresql://user:password@host:port/database

MCP Client Configuration

Add to your cline_mcp_settings.json:

{
  "mcpServers": {
    "pgtuner_mcp": {
      "command": "python",
      "args": ["-m", "pgtuner_mcp"],
      "env": {
        "DATABASE_URI": "postgresql://user:password@localhost:5432/mydb"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Server Modes

1. Standard MCP Mode (Default)

# Default mode (stdio)
python -m pgtuner_mcp

# Explicitly specify stdio mode
python -m pgtuner_mcp --mode stdio

2. HTTP SSE Mode (Legacy Web Applications)

# Start SSE server on default host/port (0.0.0.0:8080)
python -m pgtuner_mcp --mode sse

# Specify custom host and port
python -m pgtuner_mcp --mode sse --host localhost --port 3000

# Enable debug mode
python -m pgtuner_mcp --mode sse --debug

3. Streamable HTTP Mode (Modern MCP Protocol - Recommended)

The streamable-http mode implements the modern MCP Streamable HTTP protocol with a single /mcp endpoint. It supports both stateful (session-based) and stateless modes.

# Start Streamable HTTP server in stateful mode (default)
python -m pgtuner_mcp --mode streamable-http

# Start in stateless mode (fresh transport per request)
python -m pgtuner_mcp --mode streamable-http --stateless

# Specify custom host and port
python -m pgtuner_mcp --mode streamable-http --host localhost --port 8080

# Enable debug mode
python -m pgtuner_mcp --mode streamable-http --debug

Stateful vs Stateless:

  • Stateful (default): Maintains session state across requests using mcp-session-id header. Ideal for long-running interactions.
  • Stateless: Creates a fresh transport for each request with no session tracking. Ideal for serverless deployments or simple request/response patterns.

Endpoint: http://{host}:{port}/mcp

Available Tools

Query Analysis Tools

  1. get_top_queries - Get the slowest or most resource-intensive queries

    • Parameters: sort_by (total_time, mean_time, resources), limit
  2. explain_query - Explain the execution plan for a SQL query

    • Parameters: sql, analyze (boolean), hypothetical_indexes (optional)

Index Tuning Tools

  1. analyze_workload_indexes - Analyze frequently executed queries and recommend optimal indexes

    • Parameters: max_index_size_mb, method (dta, greedy)
  2. analyze_query_indexes - Analyze specific SQL queries and recommend indexes

    • Parameters: queries (list), max_index_size_mb
  3. get_index_recommendations - Get index recommendations for a single query

    • Parameters: query, max_recommendations
  4. test_hypothetical_index - Test how a hypothetical index would affect query performance

    • Parameters: table, columns, query, using (btree, hash, etc.)
  5. list_hypothetical_indexes - List all current hypothetical indexes

  6. reset_hypothetical_indexes - Remove all hypothetical indexes

Database Health Tools

  1. analyze_db_health - Comprehensive database health analysis

    • Parameters: health_type (index, connection, vacuum, sequence, replication, buffer, constraint, all)
  2. get_index_health - Analyze index health (duplicate, unused, bloated)

Utility Tools

  1. execute_sql - Execute a SQL query (respects access mode)

    • Parameters: sql
  2. list_schemas - List all schemas in the database

  3. get_table_info - Get detailed information about a table

    • Parameters: schema, table

HypoPG Extension

Enable in Database

CREATE EXTENSION hypopg;

Example Usage

Find Slow Queries

# Get top 10 resource-consuming queries
result = await get_top_queries(sort_by="resources", limit=10)

Analyze and Optimize a Query

# Get explain plan
plan = await explain_query(
    sql="SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"
)

# Get index recommendations
recommendations = await analyze_query_indexes(
    queries=["SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"]
)

# Test hypothetical index
test_result = await test_hypothetical_index(
    table="orders",
    columns=["user_id", "status"],
    query="SELECT * FROM orders WHERE user_id = 123 AND status = 'pending'"
)

Database Health Check

# Run all health checks
health = await analyze_db_health(health_type="all")

# Check specific areas
index_health = await analyze_db_health(health_type="index")
vacuum_health = await analyze_db_health(health_type="vacuum")

Docker

Build

docker build -t pgtuner_mcp .

Run

# Streamable HTTP mode (recommended)
docker run -p 8080:8080 \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  pgtuner_mcp --mode streamable-http

# Streamable HTTP stateless mode
docker run -p 8080:8080 \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  pgtuner_mcp --mode streamable-http --stateless

# SSE mode (legacy)
docker run -p 8080:8080 \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  pgtuner_mcp --mode sse

# stdio mode (for MCP clients)
docker run \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  pgtuner_mcp

Requirements

  • Python 3.10+
  • PostgreSQL 12+ (recommended: 14+)
  • pg_stat_statements extension (for query analysis)
  • hypopg extension (optional, for hypothetical index testing)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured