
Petstore MCP Server
A comprehensive Model Context Protocol implementation for the Swagger Petstore API that provides 19 tools across pet management, store operations, and user management categories.
README
Petstore MCP Server & Client
A comprehensive Model Context Protocol (MCP) implementation for the Swagger Petstore API. This project includes both a complete MCP server and a sophisticated client system for seamless agent integration.
Overview
This project provides:
- MCP Server: Complete implementation of all Petstore API endpoints
- MCP Client: High-level client with agent-friendly interfaces
- Agent Integration: Ready-to-use components for AI agents
- Configuration Management: Flexible configuration system
- Prompt Templates: Pre-built prompts for different scenarios
Project Structure
petstore/
├── openapi.yaml # OpenAPI 3.0 specification
├── petstore-mcp-server.py # MCP server implementation
├── petstore_mcp_client.py # Comprehensive MCP client
├── agent_interface.py # High-level agent interface
├── transport.py # MCP transport layer
├── prompt_manager.py # Prompt template management
├── sampling.py # AI model sampling configurations
├── client_config.py # Configuration management
├── requirements.txt # Server dependencies
├── client_requirements.txt # Client dependencies
├── mcp-server-config.json # MCP server configuration
├── example_usage.py # Usage examples
├── test_server.py # Server testing script
├── setup.sh # Setup script
└── README.md # This documentation
MCP Server
Features
The MCP server provides comprehensive access to the Petstore API with 19 tools across three categories:
Pet Management (8 tools)
- add_pet: Add a new pet to the store
- update_pet: Update an existing pet
- get_pet_by_id: Find pet by ID
- find_pets_by_status: Find pets by status (available, pending, sold)
- find_pets_by_tags: Find pets by tags
- update_pet_with_form: Update a pet using form data
- delete_pet: Delete a pet
- upload_pet_image: Upload an image for a pet
Store Operations (4 tools)
- get_inventory: Get pet inventories by status
- place_order: Place an order for a pet
- get_order_by_id: Find purchase order by ID
- delete_order: Delete purchase order by ID
User Management (7 tools)
- create_user: Create a new user
- create_users_with_list: Create multiple users from a list
- login_user: Log user into the system
- logout_user: Log out current user session
- get_user_by_name: Get user by username
- update_user: Update user information
- delete_user: Delete a user
Server Installation
-
Install server dependencies:
pip3 install -r requirements.txt
-
Make the server executable:
chmod +x petstore-mcp-server.py
-
Or run the setup script:
bash setup.sh
Server Configuration
For Amazon Q CLI
Add the server to your MCP configuration:
{
"mcpServers": {
"petstore": {
"command": "python3",
"args": ["petstore-mcp-server.py"],
"cwd": "/path/to/petstore",
"env": {}
}
}
}
Running the Server
# Direct execution
python3 petstore-mcp-server.py
# With Amazon Q CLI
q chat --mcp-server petstore
Server API Examples
Pet Management
Add a new pet:
{
"pet": {
"name": "Buddy",
"photoUrls": ["https://example.com/buddy.jpg"],
"category": {
"id": 1,
"name": "Dogs"
},
"tags": [
{
"id": 1,
"name": "friendly"
}
],
"status": "available"
}
}
Find pets by status:
{
"status": "available"
}
Store Operations
Place an order:
{
"order": {
"petId": 123,
"quantity": 1,
"shipDate": "2024-12-01T10:00:00Z",
"status": "placed",
"complete": false
}
}
User Management
Create a user:
{
"user": {
"username": "johndoe",
"firstName": "John",
"lastName": "Doe",
"email": "john@example.com",
"password": "password123",
"phone": "555-1234",
"userStatus": 1
}
}
MCP Client
Client Architecture
The MCP client system consists of multiple layers for maximum flexibility and ease of use:
Core Components
-
Transport Layer (
transport.py
)- Handles MCP server communication
- Connection management with async context managers
- Error handling and logging
-
Configuration Management (
client_config.py
)- Centralized configuration system
- Server connection settings
- Retry policies and caching options
-
Prompt Management (
prompt_manager.py
)- Template-based prompt generation
- Different templates for various operations
- Extensible prompt system
-
Sampling Configuration (
sampling.py
)- Multiple AI model sampling presets
- Configurable parameters for different use cases
- Easy configuration management
-
Agent Interface (
agent_interface.py
)- High-level task execution
- Seamless integration of all components
- Agent-friendly API
Client Installation
-
Install client dependencies:
pip3 install -r client_requirements.txt
-
Ensure server is available:
# Make sure the MCP server is in the same directory ls petstore-mcp-server.py
Client Usage
Basic Client Usage
from petstore_mcp_client import PetstoreClient
async def main():
client = PetstoreClient()
async with client.connect():
# Find available pets
pets = await client.find_pets_by_status("available")
# Add a new pet
new_pet = await client.add_pet(
name="Buddy",
photo_urls=["https://example.com/buddy.jpg"],
status="available"
)
# Get inventory
inventory = await client.get_inventory()
Agent Interface Usage
from agent_interface import PetstoreAgent
from client_config import ClientConfig
async def main():
# Initialize agent with configuration
config = ClientConfig.default()
agent = PetstoreAgent(config)
# Execute high-level tasks
result = await agent.execute_task("find_pets", status="available")
# Get prompts for AI models
prompt = agent.get_prompt("pet_search", status="available", tags=["friendly"])
# Get sampling configuration
sampling_config = agent.get_sampling_config("balanced")
Advanced Client Features
from petstore_mcp_client import PetstoreAgent
async def main():
agent = PetstoreAgent()
# Execute complex workflows
workflow_result = await agent.execute_pet_workflow(
"create_pet",
name="Max",
category="Dogs",
tags=["friendly", "large"]
)
# Get store summary
summary = await agent.client.get_store_summary()
Configuration Options
Client Configuration
from client_config import ClientConfig, ServerConfig
# Custom configuration
config = ClientConfig(
server=ServerConfig(
command="python3",
args=["./petstore-mcp-server.py"],
timeout=30
),
retry_attempts=3,
retry_delay=1.0,
log_level="INFO",
enable_caching=True,
cache_ttl=300
)
Sampling Configurations
Available sampling presets:
- conservative: Low temperature, focused responses
- balanced: Moderate creativity and focus (default)
- creative: Higher temperature, more creative responses
- precise: Zero temperature, deterministic responses
from sampling import SamplingManager
sampling = SamplingManager()
# Get different configurations
conservative = sampling.get_config_dict("conservative")
creative = sampling.get_config_dict("creative")
Prompt Templates
Available prompt templates:
- pet_search: For finding and filtering pets
- pet_management: For pet inventory operations
- order_processing: For handling customer orders
- user_management: For user account operations
from prompt_manager import PromptManager
prompts = PromptManager()
# Get prompt for pet search
prompt = prompts.get_prompt(
"pet_search",
status="available",
tags=["friendly", "small"]
)
Agent Integration
Task-Based Operations
The agent interface provides high-level tasks that AI agents can easily use:
# Find pets
await agent.execute_task("find_pets", status="available", tags=["friendly"])
# Manage pets
await agent.execute_task("manage_pet", action="add", name="Buddy", photoUrls=["url"])
# Process orders
await agent.execute_task("process_order", action="place", petId=123, quantity=1)
# Manage users
await agent.execute_task("manage_user", action="create", username="john", email="john@example.com")
Workflow Execution
# Pet management workflow
result = await agent.execute_pet_workflow(
"create_pet",
name="Luna",
category="Cats",
tags=["indoor", "quiet"],
photo_urls=["https://example.com/luna.jpg"]
)
# Inventory management workflow
inventory = await agent.execute_pet_workflow("manage_inventory")
Error Handling
The client system includes comprehensive error handling:
- Network Errors: Automatic retry with exponential backoff
- API Errors: Meaningful error messages and suggestions
- Validation Errors: Input validation with helpful feedback
- Connection Errors: Graceful degradation and recovery
Testing
Server Testing
# Test server functionality
python3 test_server.py
Client Testing
# Test client functionality
python3 example_usage.py
API Reference
Base URL
- Production:
https://petstore3.swagger.io/api/v3
Authentication
- API Key authentication for certain endpoints
- OAuth2 support for pet operations
Rate Limiting
- Configurable retry policies
- Exponential backoff for failed requests
Development
Extending the Server
- Add new tool functions using
@server.call_tool()
decorator - Update tool definitions in
handle_list_tools()
- Add appropriate error handling and validation
- Update documentation
Extending the Client
- Add new methods to
PetstoreClient
class - Create corresponding agent workflows
- Add prompt templates for new operations
- Update configuration options
Adding New Prompts
from prompt_manager import PromptTemplate
# Create new template
template = PromptTemplate(
system="You are a pet care specialist.",
user_template="Provide care advice for {pet_type} with {condition}",
examples={"basic": "Care for a sick dog"}
)
# Add to manager
prompt_manager.add_template("pet_care", template)
Security Considerations
- API keys are handled securely
- Passwords are not logged or cached
- HTTPS connections for all API calls
- Input validation and sanitization
- Error messages don't expose sensitive information
Performance
- Async/await throughout for non-blocking operations
- Connection pooling for HTTP requests
- Configurable caching with TTL
- Efficient JSON parsing and serialization
Contributing
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Update documentation
- Submit a pull request
License
This project follows the same license as the Swagger Petstore API (Apache 2.0).
Support
For issues and questions:
- Check the example usage scripts
- Review the test files
- Examine the configuration options
- Create an issue with detailed information
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.