Personal RAG MCP Server

Personal RAG MCP Server

Enables storing and searching personal notes, documents, and snippets using semantic search and RAG capabilities across Claude Desktop, VS Code, and Open WebUI.

Category
Visit Server

README

Personal RAG MCP Server

A Model Context Protocol (MCP) server that provides personal knowledge base with RAG (Retrieval-Augmented Generation) capabilities. Share context across Claude Desktop, Claude Code, VS Code, and Open WebUI.

Features

  • Hybrid Storage: SQLite for full-text documents + Qdrant for semantic search
  • Rich Metadata: Comprehensive metadata capture for future extensibility
  • Dual Transport: stdio (for Claude Desktop/VS Code) + HTTP Streaming (for Open WebUI)
  • Forward-Compatible: Strategy pattern allows adding advanced RAG features without refactoring
  • Containerized: Runs in Docker, connects to existing Qdrant/Ollama/LiteLLM infrastructure

Architecture

User Input → MCP Tool
    ↓
[1] Generate embedding (Ollama)
    ↓
[2] Store full text + metadata in SQLite
    ↓
[3] Store vector in Qdrant
    ↓
Return confirmation

Search Query
    ↓
[1] Embed query (Ollama)
    ↓
[2] Search Qdrant (semantic search)
    ↓
[3] Retrieve full text from SQLite
    ↓
[4] Generate response (LiteLLM)
    ↓
Return answer + sources

MCP Tools

1. store_memory

Store notes, documents, or snippets in the knowledge base.

store_memory(
    text="Your content here",
    namespace="notes/personal",  # Hierarchical organization
    tags=["tag1", "tag2"],
    title="Optional Title",
    category="personal",  # work, personal, family
    content_type="note"  # note, document, snippet
)

2. search_memory

Semantic search across your knowledge base.

search_memory(
    query="What did I learn about X?",
    namespace="notes/personal",  # Optional filter
    limit=5,
    content_type="note"  # Optional filter
)

3. ask_with_context

Ask questions with RAG (retrieval + generation).

ask_with_context(
    question="What are my thoughts on X?",
    namespace="notes/personal",  # Optional filter
    limit=5  # Context chunks to retrieve
)

Project Structure

personal-rag-mcp/
├── Dockerfile
├── requirements.txt
├── README.md
├── config/
│   ├── pipeline.yaml          # RAG pipeline config
│   └── server.yaml            # Server config
├── personal_rag_mcp/
│   ├── server.py              # MCP server entry point
│   ├── storage/
│   │   ├── sqlite_store.py    # SQLite document storage
│   │   ├── qdrant_store.py    # Qdrant vector storage
│   │   └── schema.py          # Pydantic metadata models
│   ├── pipeline/
│   │   ├── retriever.py       # Retrieval strategies
│   │   ├── reranker.py        # Reranking strategies
│   │   ├── expander.py        # Query expansion
│   │   ├── generator.py       # LLM generation
│   │   └── pipeline.py        # RAG orchestration
│   └── utils/
│       ├── embeddings.py      # Ollama embedding client
│       └── chunking.py        # Text chunking
├── scripts/
│   ├── init_db.py             # Initialize database
│   └── backup.py              # Backup utility
└── tests/

Environment Variables

# Transport
TRANSPORT=http  # or stdio
PORT=8765

# Storage
SQLITE_PATH=/app/data/documents.db
QDRANT_URL=http://qdrant:6333

# AI Services
OLLAMA_URL=http://ollama:11434
LITELLM_URL=http://litellm:4000

Development

Setup

# Create virtual environment
python -m venv venv
source venv/bin/activate  # or `venv\Scripts\activate` on Windows

# Install dependencies
pip install -r requirements.txt

Run Locally (stdio)

export SQLITE_PATH=./data/documents.db
export QDRANT_URL=http://localhost:6333
export OLLAMA_URL=http://localhost:11434
export LITELLM_URL=http://localhost:4000

python -m personal_rag_mcp.server

Run Locally (HTTP)

export TRANSPORT=http
export PORT=8765

python -m personal_rag_mcp.server

Docker Deployment

Prerequisites

This MCP server depends on the following AI infrastructure services:

  • Qdrant (vector database) - Port 6333
  • Ollama (embeddings) - Port 11434
  • LiteLLM (LLM proxy) - Port 4000/8000

Example Docker Compose Integration

services:
  # Required: Qdrant vector database
  qdrant:
    image: qdrant/qdrant:latest
    container_name: qdrant
    ports:
      - "6333:6333"
    volumes:
      - qdrant-data:/qdrant/storage
    restart: unless-stopped

  # Required: Ollama for embeddings
  ollama:
    image: ollama/ollama:latest
    container_name: ollama
    ports:
      - "11434:11434"
    volumes:
      - ollama-data:/root/.ollama
    restart: unless-stopped

  # Required: LiteLLM proxy for LLM access
  litellm-proxy:
    image: ghcr.io/berriai/litellm:main-latest
    container_name: litellm-proxy
    ports:
      - "4080:8000"
    volumes:
      - ./litellm_config.yaml:/app/config.yaml
    environment:
      - AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
      - AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
      - AWS_REGION=${AWS_REGION}
      - OLLAMA_API_BASE=http://ollama:11434
    entrypoint: ["litellm", "--config", "/app/config.yaml", "--port", "8000"]
    depends_on:
      - ollama
    restart: unless-stopped

  # Personal RAG MCP Server
  personal-rag-mcp:
    build: ./personal-rag-mcp
    container_name: personal-rag-mcp
    ports:
      - "8765:8765"
    environment:
      - TRANSPORT=http
      - PORT=8765
      - QDRANT_URL=http://qdrant:6333
      - OLLAMA_URL=http://ollama:11434
      - LITELLM_URL=http://litellm-proxy:8000
      - OPENAI_API_KEY=${LITELLM_API_KEY}  # LiteLLM auth
      - SQLITE_PATH=/app/data/documents.db
    volumes:
      - personal-rag-data:/app/data
      - ./config/personal-rag:/app/config:ro
    depends_on:
      - qdrant
      - ollama
      - litellm-proxy
    restart: unless-stopped

volumes:
  qdrant-data:
  ollama-data:
  personal-rag-data:

LiteLLM Configuration Example

The MCP server uses LiteLLM as a unified proxy, which means you can use any LLM provider:

  • Local: Ollama (llama3, deepseek, qwen, etc.)
  • Cloud: OpenAI, Anthropic Claude, Google Gemini, Cohere
  • AWS Bedrock: Claude, Llama, Mistral, etc.
  • Azure OpenAI: GPT-4, GPT-3.5
  • 100+ other providers: See LiteLLM docs

Simply configure your preferred models in litellm_config.yaml:

model_list:
  # Local Ollama models (no API key needed)
  - model_name: deepseek-r1-1.5b
    litellm_params:
      model: ollama/deepseek-r1:1.5b
      api_base: http://ollama:11434

  # AWS Bedrock models
  - model_name: bedrock-claude-3-5-sonnet-v2
    litellm_params:
      model: bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0
      aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
      aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
      aws_region_name: us-east-2

  # OpenAI models
  - model_name: gpt-4o
    litellm_params:
      model: openai/gpt-4o
      api_key: os.environ/OPENAI_API_KEY

  # Anthropic Claude
  - model_name: claude-3-5-sonnet
    litellm_params:
      model: anthropic/claude-3-5-sonnet-20241022
      api_key: os.environ/ANTHROPIC_API_KEY

  # Embedding model (for semantic search)
  - model_name: nomic-embed-text
    litellm_params:
      model: ollama/nomic-embed-text
      api_base: http://ollama:11434

general_settings:
  master_key: sk-1234  # Set LITELLM_API_KEY in .env

The server defaults to using whatever model is configured in LiteLLM. You can easily switch between local and cloud models without changing the MCP server code.

Environment File (.env)

# LiteLLM API Key
LITELLM_API_KEY=sk-1234

# AWS Credentials (optional, for Bedrock models)
AWS_ACCESS_KEY_ID=your_access_key
AWS_SECRET_ACCESS_KEY=your_secret_key
AWS_REGION=us-east-2

First-Time Setup

  1. Pull required Ollama models:

    docker exec ollama ollama pull nomic-embed-text
    docker exec ollama ollama pull deepseek-r1:1.5b
    
  2. Verify services are running:

    curl http://localhost:6333/collections  # Qdrant
    curl http://localhost:11434/api/tags     # Ollama
    curl -H "Authorization: Bearer sk-1234" http://localhost:4080/v1/models  # LiteLLM
    
  3. Test the MCP server:

    docker exec personal-rag-mcp python /app/scripts/test_e2e.py
    

For complete infrastructure setup, see the parent repository.

Roadmap

Phase 1 (Current)

  • ✅ Hybrid SQLite + Qdrant storage
  • ✅ Basic RAG pipeline (vector retrieval)
  • ✅ MCP tools (store, search, ask)
  • ✅ Dual transport (stdio + HTTP)

Phase 2 (Future)

  • [ ] Advanced RAG features (reranking, hybrid search, query expansion)
  • [ ] Bulk document ingestion (PDF, DOCX parsing)
  • [ ] Conversation history capture
  • [ ] Multi-user support with authentication

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured